| FEATURE

Desktop /N

Michael Birken is actively
involved in the design and
research of emerging

trading technologies at a
Manhattan-based financial
software company. He is a Sun
Certified Java Programmer
and Developer. He has a BS in
computer engineering from
Columbia University.

o_1@hotmail.com

48 April 2005

Delegates Reloaded:

Walking the Path

Using the reflection API

by Michael Birken

The function pointer, a powerful concept in the C and
C++ programming languages, has no direct equivalent in
Java. No syntax exists to pass the address of a method to a
JButton, for instance, that links it with pressing the button.
Instead, Java promotes the use of anonymous inner classes,
like this one:

okButton.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
startProcessing();
}
bi

Back in October 1996, in an attempt to eliminate the
need for this bloated syntax, Microsoft introduced an
object-oriented method pointer into J++ called a
“delegate.” Sun Microsystems, citing the delegate as
language pollution, sued Microsoft a year later for violat-
ing its Java license agreement. The lawsuit successfully
maintained the purity of Java, but it also encouraged
Microsoft to develop a competing Java-like language,
C#. Today, the delegate lives on in C# and the other .NET
programming languages that comprise Microsoft’s Com-
mon Language Runtime.

Had the delegate become part of Java, would
Swing programming be easier? More than simply
hooking a component to an action, the delegate
could invoke methods directly or asynchronously on
a worker thread. Could that technique have solved
many of the Swing threading headaches that we're
faced with today? This article explores these possibili-
ties by using Java’s reflection API to restore the dele-
gate concept to Java.

Building a Delegate

java.lang.reflect.Method provides a description of a
method including formal parameter types, return type,
access modifier, declared exceptions, and annotations. It
also provides an invoke() method to perform an indirect

call; however, unlike a function pointer, Method is not
bound to a particular object instance. It’s part of a toolkit
that includes Constructor and Field for inspecting
classes. To use invoke() you must pass in a reference to
an object instance.

Listing 1 demonstrates how to use it to call System.
out.println() indirectly. Since the static member vari-
able out is an instance of PrintStream, Line 4 calls get-
Method() on the PrintStream Class passing in a descrip-
tion of the method that we're interested in. Note, many
of the reflection API methods were retrofitted with
varargs as of Java 5; previously, getMethod() accepted
the method name followed by the method parameter
types as a Class[]. Line 8 passes the string to print
along with out to invoke() on the Method acquired in
line 4.

To build a Delegate class, I joined together a Method
and an object instance. Compare Listing 1 to the follow-
ing snippet:

Delegate delegate = new Delegate(
System.out, “println”);

delegate.invoke(“Hello World!”);

First, notice the lack of exception handling. Inter-
nally, Delegate transforms checked exceptions into
unchecked exceptions for cleaner code. Second,
observe that when Delegate is constructed, the print-
In() method is not fully described; the parameter types
are absent. Delegate.invoke() completes the method
resolution on the first call using getClass() on each argu-
ment. Subsequent calls reuse a cached Method; however,
this technique, although convenient, fails when a null
parameter is used on the initial call. An alternative
constructor lets you specify the argument class types
explicitly like this:

Delegate delegate = new Delegate(
System.out, “println”, String.class);

delegate.invoke(“Hello World!”);
Delegate seeks out and binds to methods of any

access level, including private ones. Instead of using
Class.getMethod(), which obtains only public methods,

www.SYS-CON.com/|D)

Delegate calls Class.getDeclaredMethod(). Unfortunately,
both of those functions exclude inherited methods. To

get around that, Delegate iteratively applies getDeclared-
Method() to all the classes in the hierarchy with the aid of
Class.getSuperclass(). After locating the method of interest,
Method.setAccessible(true) is used to suppress invocation
access checking.

If you're surprised that you can call a private method from
outside of an object, recognize that access modifiers were
designed for code organization, not for security; they enable
you to expose usage method while hiding implementation de-
tails. Suppressing access checking is highly beneficial for unit
testing. Normally to unit test implementation methods, you
have to grant them at least default (package) access; however,
Delegate provides an alternative that lets you keep those
methods private.

Since static methods are bound to classes, not instances,

Delegate provides another constructor, which accepts a Class.

The following example creates a Delegate to the Math.cbrt()
function, a static method introduced in Java 5 to compute
cube roots.

Delegate delegate = new Delegate(Math.class, “cbrt”);
double x = (Double)delegate.invoke(8.0);

Delegate.invoke() returns type Object; in this case, the
result is first cast to Double and then auto-unboxed to a
double primitive.

Bridging Tiers

Delegate’s primary purpose is to serve as a bridge
between an event-driven front-end and a multithreaded
middle tier. In Swing, when an event is triggered, it does
not execute right away. Instead, it joins the event queue
(java.awt.EventQueue) where it waits along with other
events to be executed by the Event-Dispatch Thread
(EDT). The EDT pulls events off the queue and services
them one-by-one.

An event that requires a significant time to complete —
either because it’s computationally intensive or because
it makes blocking calls — holds up the rest of the queue,
causing the user interface to seem sluggish. In fact, since
repaint requests traverse the queue as well, expensive
events typically cause components to appear as lifeless
solid-colored rectangles.

If an event can't be processed in a timely fashion, it
should forward the request to a worker thread. That’s the
reason why Delegate provides invokeAsync(). invokeAs-
ync() is called just like invoke(), but it dispatches a java.
util.concurrent.ThreadPoolExecutor thread to execute the
method. Since it’s an asynchronous call, it returns imme-
diately without a return value. To see this in use, here’s an
indirect call to println() on a different thread:

Delegate delegate = new Delegate(
System.out, “println”);

delegate.invokeAsync(“Hello World!”);
Now, Swing components aren’t thread-safe; they were

designed to be accessed exclusively by the EDT. To safely
call Swing methods from worker threads, Delegate pro-

www.SYS-CON.com/JD)

| Constructors
Dalegate (Object object, S5tring I hod Del R e
methodilame) initial call. ot

wold inw

| | Pelegate (Object object, BString Fully speu.ﬁpd ins me Delcgale

| | methoduame, class... argumentTypes) tance method

| Delegate(Class _class, String Static hod Deleg Ty .

| methodiams) initial call.

[Telegate (Class _class, String g g e s
methodName, Class... argumentTypes) x hod

| Methods

| [Pisct_imvoRsichiact,,, arquments) Call ¢ method directly on same thread.

eAsync(final object...

Executes Delegate method on worker thread.

okeUl (final Tbject,..
arquments)

Executes Delegate method on EDT.

arguments)

bject invokeUIAndWait (final Object...

Executes Delegate method on EDT and wats for the

result,

Figure 1 Constructors and methods of Delegate

vides invokeUI(). If invokeUI() is called by the EDT,

the method is invoked directly. Otherwise, a request to
execute the method is placed in the event queue. Since
the call is potentially asynchronous, invokeUI() doesn’t
return a value. On the other hand, Delegate.invokeUIAnd-

Wait() enqueues the request, blocks until the EDT fulfills it,

and then returns the result. The following example dem-
onstrates how to obtain a JTextField value safely from any
thread:

Delegate delegate = new Delegate(
textField, “getText”);
String text = (String)delegate

.invokeUIAndWait();

-

Based on:

@ Java™ T
@ Servlets™ = z: E
@ Java Serverpages™ S

e and Struts hf—lﬁ\

common controls in action
Online Demo!

Contains the most common control elements
which are required for the development of J2EE™
applications with rich HTML frontends like:

mww Menu | Forms |
Calendar | _ Colorpicker |

www.common-controls.com

April 2005

49

DeskTop /N

FEATURE

A Listener Delegate

To join Swing events with methods, I combined dele-
gates with a dynamic proxy. The dynamic proxy is an
often-overlooked concept that’s been available since Java
1.3. Before I discuss it, let’s quickly review the proxy
pattern.

A proxy acts as a middleman, serving as a stand-in for
another object. Typically that other object and the proxy
share a common interface. In the case of Remote Method
Invocation (RMI), for example, you access a remote object
living in a JVM on a different machine across the network
via a local proxy. Internally, the local proxy forwards all
method calls to the remote counterparts. The proxy effec-
tively creates the illusion that the remote class is acces-
sible locally.

For Swing components, I needed a proxy with the ability
to stand-in for any event listener. I could have created a
class that implements all of the listener interfaces in java.
awt.event and forwards the calls to Delegate.invoke()
accordingly, but that would have required way too much
typing.

Luckily, java.lang.reflect.Proxy provides a static new-
ProxyInstance() method for generating a proxy class
on-the-fly that implements a specified set of interfaces —
hence the term “dynamic proxy.” newProxylnstance()
requires a ClassLoader, a list of interfaces as a Class|[],
and a reference to an InvocationHandler implementation.
InvocationHandler contains a single method with this
signature:

public Object invoke(Object proxy,
Method method, Object[] args)

throws Throwable

All calls on the dynamically created proxy funnel down to
InvocationHandler.invoke() where the Method parameter
contains a description of the invoked proxy method. It’s a
simple matter to use it along with args to make a Delegate.
invoke() call.

To generate dynamic proxies, I created a factory class
called UIDelegate. Listing 2 shows one of its static cre-
ate() methods. The return type, UlDelegateListener, is an
interface that extends all of the interfaces in java.awt.event.
UlDelegateProxy is an inner class that implements Invoca-
tionHandler.

The create() method accepts an arbitrary number of
arguments in groups of four, each corresponding to a
method of an event listener interface. A group consists of
the object with a handler method, the name of the event
method, the name of the handler method, and the tech-

UIListener create(Cbject... params) A group for each listener method: (1) object/class.
(2) listener methed. (3) handl thod and (4)
svnchronous ; us call flag.

UILiStenar creats (Object objact Object containing instance handler methods.

UIlistener creats{Cbject object, boolean Object containing instance handler methods and

asyncUTHandling) o AT .

UlListensr create(Class _claas) Class contaiming static handler methods.

UIListensr qeateﬁlas: _.:la_r:, boclean Class - ,slatic handl thonds

asyncUIHandling) sy 1 fas i g call flag.

50

Figure 2 Static factory methods of UlDelegate

April 2005

nique to call the handler. The last parameter is a boolean:
true indicates that the handler is invoked asynchronously
and false causes the EDT to invoke it directly. The following
example shows how to associate a handleOK() method with
a button:

okButton.addActionListener (UIDelegate
.create(this, “actionPerformed”,

“handleOK”, true));

Dialog Patterns

Switching from the EDT to a worker thread and back again to com-
plete a business task maintains user interface responsiveness, but it
breaks up a conceptually linear flow of execution into scattered, disjoint
pieces. Consider a menu item that pops up in an options dialog before
executing a task. To avoid the threading issues discussed in body of this
article you can link the OK button on the dialog to the business logic
with Delegate.invokeAsync(). When the task completes, it callbacks a
success or failure method with Delegate.invokeUl(). That technique cer-
tainly works and often can’t be avoided, but whenever possible, strive
for a linear flow of execution.

One way to achieve this is to follow the pattern used by JOptionPane.
showlInputDialog(). showInputDialog() displays an input dialog and it
blocks until the user enters a string. A complicated options dialog, as
mentioned in the previous example, would return a bean containing a
set of fields. We can link the menu item that manifests the dialog to
a controller method using UlDelegate and we can configure it to call
the controller with a worker thread. The controller provides the linear
flow: it shows the dialog, it blocks for input, it validates the input, and
it either displays an invalid fields message or it runs the business logic.
The show() method of such a dialog must be thread-safe, unlike showlIn-
putDialog() which is designed to be exclusively invoked by the EDT. See
the show() method of ProgressDialog for an example of how to do this.

The Mandelbrot Algorithm

The Mandelbrot fractal is the intersection of mathematics, computer sci-
ence and art. It’s amazing that something so visually attractive is generated by
such a simple algorithm.

The fractal relies on basic properties of complex numbers. A complex
number is a mathematical construct analogous to an object with two fields.
It’s written as the sum x +yi, where x and y are real numbers (double types)
and i is the imaginary constant defined by the relation i2 = -1. Each coordinate
[x, y] represents a point on the complex plane. The magnitude of a complex
number is the distance between that point and the origin, computable using
the Pythagorean Theorem.

The image is generated by row scanning a rectangular region of the
complex plane and assigning each point C = [, y] a color by repeating the rule
Iy = Iy?+ C, where Z, = C until the magnitude of Zy., exceeds 2. The value of
N when the loop terminates determines the color of point C. If the loop fails to
terminate after a larger number of iterations, then C is part of the Mandelbrot
set and that point is traditionally assigned the color black. For those whose
algebra is rusty, given C =[x, y] and Zy = [a, b], Zy. = Zy? + C= (@ + bi)? + (x + yi)
=a%+2abi + (bi) + x +yi=a>+2abi-b? + x + yi=[a2-b? + X, 2ab +y].

For further fractal exploration, see the references.

www.SYS-CON.com/|D)

The referenced handleOK() method must accept an
ActionEvent.

For those listeners with multiple methods, you only need
to specify the methods that you're interested in. For example,
MouseListener provides five methods, but if you only need to
respond to enter and exit events on the EDT, you can do it like
this (see Figure 2):

panel.addMouseListener (new UIDelegate(
this, “mouseEntered”, “handleEnter”,
false, this, “mouseExited”,

“handleExit”, false));

Monitoring Progress

To demonstrate delegates in action, I put together a simple
fractal image explorer. The application consists of an image
window and a progress dialog. When you click on a point of the
fractal, the progress dialog in Figure 3 appears, and a worker
thread starts to compute a zoomed in region. The Cancel button
lets the user terminate the running computation.

I opted not to use javax.swing.ProgressMonitor because it’s
not modal, it’s difficult to get it to appear, and its cancel button
causes it vanish immediately. Instead, I created a ProgressDialog
class to encapsulate a dialog with a JLabel, a JprogressBar, and a
JButton.

ProgressDialog monitors the progress of an object imple-
menting IProgress, the interface in Listing 4. ProgressDialog
contains a Swing timer. Every 0.25 seconds, it updates the prog-
ress bar using IProgress.getCurrent(). If the user presses Cancel,
it invokes IProgress.requestCancel(), sending out a request that
may not be satisfied immediately. The dialog remains visible
until IProgress.isDone() return true, indicating that either the
computation completed fully or it was terminated gracefully by
the user.

Note: the implementation of IProgress must be thread-safe and
its methods must return rapidly. For instance, in the fractal ex-
plorer, requestCancel() sets a volatile cancel-request flag instead
of blocking until the worker thread terminates.

A cycle starts when a mouse click launches a worker thread us-
ing UlDelegate:

UIDelegate.create(this, “mouseClicked”,

“zoom”, true)

Before computing the fractal, the worker thread calls the non-
blocking ProgressDialog.show() method. show() safely manifests
the dialog and kicks off the Swing timer by forwarding the call with
Delegate.invokeUI(). The timer is linked to checkProgress(), shown
in Listing 3, using:

UIDelegate.create(this,
“actionPerformed”, “checkProgress”,

false)

When isDone() return true, the optional ProgressDialog con-
structor parameter, completedDelegate, is called back on the EDT
with the final progress value. If the completed progress is 100%,
the image is obtained using IProgress.getResult(), and pasted to
the window.

www.SYS-CON.com/)D)

£ Mandelbrot Explorer

Progress...

0014892578125 + 0.571801 75761251

Figure 3 Modal dialog displays image generation progress

Build Incredible Interactive Diagrams
TM
with JGO

1
W' 6o for SWT/Eclipse
JGo Instruments for meters, dials, gauges
Create custom interactive diagrams, network editors,
workflows, flowcharts, and design tools. For web
servers or local applications. Designed to be easy
to use and very extensible.

« Fully functional evaluation kit
» No runtime fees

* Full source code

* Excellent support

Free evaluation at:
www.nwoods.com/go

Northwoods 800-434-9820 or 603-886-9173

SOFTWARE CORPORATION

April 2005

DeskTop /N

FEATURE

See the sidebar for details on the image-generation
algorithm.

Pros and Cons

Delegates provide cleaner connections between com-
ponents and handlers both syntactically and thread-
wise. The progress monitor example demonstrates how
you can focus more on visual design and business logic
than on juggling threads. However, Delegate is not type-
safe; it's easy to get a runtime exception, for example,
after misspelling a function name. Adding a type-safe
delegate to a future version of Java might be asking for
too much, but what about a method keyword, some-
thing like this:

Method m = this.actionPerformed(

ActionEvent.class).method;

No need to catch a NoSuchMethodException since
the check occurs at compile time.

Also, we're always told to avoid reflection because
of its effect on performance. It’s conceivable that
searching for the Method corresponding to a specified
name and a set of parameters takes a performance hit,
but once located, what’s the penalty of the Method.
invoke() call itself? To gain a rough sense the answer, I
used System.nanoTime() in a simple test harness like

double average = (end - start)

/ (double)NUM;

Iran my tests using Sun’s Java 5 JVM with the default
settings on a 1.8GHz PC running Windows XP. On my
machine, it takes about 3.5ns (3.5 _10" seconds) for a
normal method call and about 150ns for a delegated call.
Although that’s around 43 times slower, it still means that
you can make 6.6 million delegated calls a second. Swing
applications, at the very least, should be able take full
advantage of Delegates without noticeable delays.

You can checkout my performance test harness along
with the other code discussed in this article online at
www.sys-con.com/java/sourcec.cfm.

References

e .NET Delegates: http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/csref/html/vcrefThe-
DelegateType.asp

¢ Reflection API Tutorial: http://java.sun.com/docs/
books/tutorial/reflect/

e Using a Swing Worker Thread: http://java.sun.com/
products/jfc/tsc/articles/threads/threads2.html

e Explore the Dynamic Proxy API: http://java.sun.com/
developer/technicalArticles/DataTypes/proxy/

e Using Dynamic Proxies to Generate Event Listeners
Dynamically: http://java.sun.com/products/jfc/tsc/

—/ this:

long start = System.nanoTime();
for(int i = 0; i < NUM; i++) {

// ... direct/indirect method call

}

long end = System.nanoTime();

Listing 1

1 Method m = null;

2 try {

3 Class c¢ = PrintStream.class;
4 m = c.getMethod(“println”,

String.class);
} catch(NoSuchMethodException e) {
}
try {
m.invoke(System.out,
“Hello World!”);
9 } catch(IllegalAccessException e) {
10 } catch(InvocationTargetException e){
11 }

Listing 2
1 public static UIListener create(
Object... params) {
2 return (UIListener)Proxy
.newProxyInstance(
3 object.getClass()
.getClassLoader(),
4 new Class[] { UIListener.class },
5 new UIDelegateProxy(params));
6

52 April 2005

articles/generic-listener2/index.html

* How to Use Progress Bars: http://java.sun.com/docs/
books/tutorial/uiswing/components/progress.html

e RMI Tutorial: http://java.sun.com/docs/books/tuto-
rial/rmi/

e Mandelbrot Set: http://mathworld.wolfram.com/
MandelbrotSet.html

Listing 3
1 private void checkProgress(
ActionEvent e) {

2 if (progress.isDone()) {

3 dialog.dispose();

4 timer.stop();

5 if (completedDelegate != null) {

6 completedDelegate.invoke (

progress.getCurrent());

7 }

8 } else {

9 noteLabel.setText (
progress.getNote());

10 progressBar.setValue(

progress.getCurrent());
11}
12 }

Listing 4

1 public interface IProgress {

2 public void reset();
public int getCurrent();
public boolean isDone();
public String getNote();
public String getLargestNote();
public void requestCancel();
public int getMin();
public int getMax();
10 public Object getResult();
11 }

(R)

www.SYS-CON.com/|D)

