JC THE PARADOX OF WRITING PERFECT CODE s

\

o, 1 i-Technology Magazine in the World

it
l SEE PAGE 47

ir COMING TO NEW YORK CITY!

e

AJAXWORLDEAST
CONFERENGE & EXPG®
| www.AjaxWaorldExpo.com

JDJ.SYS-CON.COM VOL.12 ISSUE:1
L]

Wedision ang

Il
the

Patterns for designing scalable and robust user-interfaces

—

9US $6

i PLUS... _ ey
OEB3 © Configuring Weblogic ~ © Whatls © Performance Management 101
Transactions - Server 9. JOBG - SCA? - for WehLogic Portal

RET)
u

0928

0 17017

THE WORLD’'S LEADING i-TECHNOLOGY MAGAZINE JDJ.SYS-CON.COM

DEskToP /AN

Michael Birken

54

January 2007

ediation

aafl:erns for d(esigning scalable

and
the

n v Middle

and robust user-interfaces

by Michael Birken

ven for many seasoned developers, Swing code

can be notoriously difficult to organize. Where is

the right place to put parsing and validation logic?

How do you prevent those threading issues that

cause lockups or repainting glitches? Is it possible
to unit test GUI logic? Can the code somehow be shared
with other user-interfaces, like a web front-end? If these
questions sound familiar, the solutions presented here
may revolutionize the way you code with Swing.

Two-ayer Separation

Suppose you want to offer your end-users a Swing-
based product built on top of a homegrown API, such as
a mathematics package, that they can actually license for
their own development purposes or perhaps even use to
extend your product through a plugin mechanism. To
achieve that goal, the API must be fully decoupled from all
Swing code. Let’s take a look at a simple example of such
an APL.

In the class Divider, I defined the following method:

public DivisionResult divide(
int dividend, int divisor, IDivisionListener divisionListener)

throws ArithmeticException { ... }

Given a dividend and a divisor it returns a DivisionRe-
sult, a simple bean containing quotient and remainder. If
divisor is 0, it throws an ArithmeticException. I'll discuss
the divisionListener parameter below.

Now, let’s slap on a JFrame to exploit this API. Division-
Frame (see Figure 1) contains 2 JTextFields that enable
the user to enter a dividend and a divisor. When the user
presses the Divide button, the resultant quotient and
remainder are displayed in a JLabel.

The simplest attempt at a separation of concerns is a
GUI layer built directly on top of the API layer. The GUI
layer consists of JFrames, JDialogs, Swing components
and their data models. The API layer contains the busi-
ness logic and as mentioned above, it should be possible
to use the API layer without a GUIL

Since there are only 2 layers in this approach, user
inputs must be prepared for the API layer in the GUI layer.
In this case, Divider.divide() accepts integers, not strings.
The ActionListener bound to the Divide button parses

the values provided by the JTextFields and it either calls
divide() or it changes the text color red to indicate invalid
input.

Keep in mind that Divider actually represents an
advanced mathematics package. Its methods may take
several seconds or minutes to complete. I decided to
simulate that effect by sleeping for 5 seconds inside of
divide(). If divide() is called directly by the ActionListener,
the GUI will appear frozen and possibly grayed-out for
that time because of Swing’s one-threaded nature (see the
sidebar, The Event Queue).

The general solution is a request-response model. The
GUI layer makes a request into the API layer on a new
thread. That thread takes as long as is needed to complete
the operation, freeing the event-dispatching thread to
continue servicing the event queue. When the result of
the operation is ready, the thread uses one of the static
invokeXX() methods of the EventQueue class to safely
update the GUI by requesting that the event-dispatching
thread handle the update on its behalf.

In this model, a thread boundary exists between the
layers: the event-dispatch thread is the only thread that
runs within the GUT layer, worker threads run within the
API layer, and neither type is allowed to cross the bound-
ary. Unfortunately, there is no mechanism to automati-
cally prevent a rogue thread from slipping through. Also,
the code required to keep switching threads tends to be
voluminous and ugly even with the aid of SwingWorker
(see Resources).

Three-Layer Separation

Consider introducing a layer between the GUI and
API layers to mediate data between them. This media-
tion layer is responsible for converting user input into
a format acceptable by the API layer and for converting
resultant values and other data from the API layer back
into a format acceptable by the GUI layer. Ideally, the
boundaries between the 3 layers should be formalized
with interfaces; though, that may not be entirely possible if
the API was provided by a third-party vendor. Finally, the
event-dispatching thread is not permitted to cross into the
mediation layer. Worker threads can pass back-and-forth
between the mediation and API layers; however, they can-
not enter the GUI layer.

|D).SYS-CON.com

For our simple example, I created a single class, aptly named
Mediator, to serve as the entire mediation layer. To formalize
the layers, Mediator implements IDivisionFrameMediator,
which allows DivisionFrame to pass the values in the JText-
Fields directly as strings:

public interface IDivisionFrameMediator {

public void divide(String dividendStr, String divisorStr);

For the reverse direction, DivisionFrame implements IDi-
visionFrame. It enables Mediator to push a DivisionResult
back to DivisionFrame in the form of a string and to mark the
input fields as valid or invalid:

public interface IDivisionFrame {
public void showDivisionResult(String divisionResult);

public void showValid(boolean dividend, boolean divisor);

Mediator is loosely-coupled to DivisionFrame; they each
hold a handle to each other as an interface type. However, the
handle cannot be a direct reference to the object in the oppos-
ing layer because that would break the thread-layer separation
rules discussed above.

We could solve the problem by creating 2 proxy classes
(see the sidebar, Proxies). Let’s call these hypothetical classes
MediatorProxy and DivisionFrameProxy. MediatorProxy
implements IDivisionFrameMediator and contains a reference
to Mediator. Whenever you invoke a method of MediatorProxy,
it spawns off a new thread and uses it to call the corresponding
method in Mediator. Similarly, DivisionFrameProxy imple-
ments IDivisionFrame and contains a reference to Division-
Frame. Calling a method of DivisionFrameProxy delegates the
invocation to DivisionFrame using EventQueue.invokeLater().

With such proxies, the code in DivisionFrame and Media-
tor appears immaculate. DivisionFrame calls directly into the
methods of its IDivisionFrameMediator and Mediator does
the same with its IDivisionFrame. It’s still a request-response
model, but the proxies hide the thread switching details and
there’s no chance of a thread inadvertently slipping by. How-
ever, creating the proxies themselves is a tedious and repetitive
task you shouldn't have to do yourself.

SwingProxy

To obviate the need to code the proxies by hand, I created
autility class called SwingProxy that dynamically generates
them for you. SwingProxy provides a static method, newS-
wingProxy(), that accepts the target object and returns a new
proxy that can be cast to any of the interface types that the
target implements. For example, for an instance of Division-
Frame, which implements IDivisionFrame, you can create a
proxy for it as follows:

IDivisionFrame divisionFrameProxy =

(IDivisionFrame)SwingProxy.newSwingProxy(divisionFrame);

The proxy automatically takes care of the thread switch-
ing. In this case, if a method of divisionFrameProxy is
invoked by a worker thread, it will call the corresponding
method of divisionFrame with the event-dispatching thread.
Similarly, a call by the event-dispatching thread will turn into
a call by a worker thread.

JD).SYS-CON.com

The Event Queue

Swing provides a single thread, the event-dispatching thread, for servicing
all user-interface requests, including repainting components. When you press
a button, its associated ActionListener is not executed immediately. Instead,
the request to execute it is placed onto the event queue. The event-dispatch-
ing thread pulls requests off the queue and executes them one-by-one, eventu-
ally handling the button press. If you implement a component listener that
performs a time-consuming task or that makes a blocking call, the event-dis-
patching thread will sit there completely dedicated to it, neglecting the other
requests on the event queue. The result is a non-responsive GUI that typically
appears grayed-out because invalidated components make requests for repaint
that also must pass through the event queue.

The event-dispatching thread is considered the only the thread that can
safely access Swing components and their data models. A worker thread can
request that the event-dispatching thread execute code on its behalf using
invokeLater() or invokeAndWiait(), static methods of the EventQueue class. Both
methods accept a Runnable implementation where run() contains the code to
execute. invokelater() inserts the Runnable into the event queue and returns
immediately. On the other hand, invokeAndWiait(), enqueues the Runnable
and waits until it is serviced by the event-dispatching thread before returning.

SwingProxy (see Listing 1) is built around java.lang.re-
flect.Proxy, a class that is capable of producing a proxy of a
specified type at runtime. The Proxy utility produces prox-
ies that resemble funnels; to create the proxy, you supply
an implementation of the InvocationHandler interface and
when you invoke any method of the proxy, it automatically
gets funneled down to InvocationHandler’s single method,
invoke():

public interface InvocationHandler {
public Object invoke(Object proxy, Method method,

Object[] args) throws Throwable;

The first parameter is a reference to the proxy. The second
is the method that was called in the form of a reflected
method type. The third is an object array containing the
arguments passed to the method.

SwingProxy contains 2 private inner classes. The first,
CallHandler, implements InvocationHandler. Its invoke()
method inspects the calling thread and switches accordingly.
When it needs to delegate a call from a worker thread to the
event-dispatching thread, it examines the return type of the
method. Ifit returns void, invokeLater() is used. Otherwise,
invokeAndWait() is called and the return value is passed back
to the worker thread that called the proxy. When the proxy is
called by the event-dispatching thread, the call is delegated to
aworker thread and nothing is ever returned. The interface
methods specifying calls from the GUI layer to the media-
tion layer should always return void. The worker threads that
CallHandler use originate from a thread-pool supplied by java.
util.concurrent.Executors.

Fiprirn | pampie

AT

iT.IlI |:

Figure 1 DivisionFrame allows the user to enter a Figure 2 ProgressDialog displays the percent

dividend and a divisor and get back a completed and allows the user to cancel

quotient and a remainder the computation

January 2007 55

DeskToP /"N

56

January 2007

FEATURE

A proxy is an object that serves as a middleman for communication
between a source object and a target object. Typically, the proxy and the
target objects share the same interface. The source object holds a reference to
target as the interface type, which makes the source oblivious to whether it is
communicating directly with the target or communicating through the proxy.

Proxies are used throughout the Java APls. Remote Method Invocation
(RMI), for instance, allows a program to communicate with a target object on
a remote machine and treat it as if it were a local object. The program actu-
ally holds a reference to a proxy that hides the networking details. The target
object and the proxy share a common interface and the program only refers to
the target as that type. The Java API for XML Web Services (JAXWS), which sup-
plants the Java API for XML-based Remote Procedure Call (JAX-RPC), performs a
similar service over a different protocol.

The second inner class, TargetInvoker, implements Runnable,
which allows it to be executed on a different thread. It performs
the actual method invocation using reflection in its run() method.

Pushing Data to the GUI

The three-layer design described above is not limited a
request-response model. The API can stream data to the GUI
by pushing it through the mediation layer. To demonstrate this,
I created a dialog to display the (artificially prolonged) progress
of the division computation (see Figure 2).

ProgressDialog contains a JProgressBar to show completion
percentage, a JLabel for status messages, and a button that
allows the user to abort the computation. ProgressDialog lives
within the GUI layer and to formally separate it from the other
layers, it implements IProgressDialog:

public interface IProgressDialog {
public void start();
public void setProgress(String message, int progress);

public void end();

Mediator holds a proxy to ProgressDialog as that
type. start() makes the dialog appear, setProgress() updates
the status label and the progress bar, and end() hides the
dialog. In turn, ProgressDialog holds a proxy to Mediator in
the form of an IProgressDialogMediator, which contains a
method that is called when the Cancel button is pressed:

public interface IProgressDialogMediator {

public void requestCancel();

Divider.divide() was written to abort if the executing thread is
interrupted. Mediator obtains a reference to that thread before
invoking Divider and requestCancel() simply interrupts it.

The third parameter of Divider.divide() is an IDivisionLis-
tener, which is repeatedly called back during the 5 second
pause to simulate progress notifications:

public interface IDivisionListener {

public void computationPerformed(int percentage);

Mediator implements IDivisionListener and it delegates
the call to IProgressDialog.setProgress(). For time consuming
methods that don't provide such a listener, JProgressBar can
be put into indeterminate mode. That mode shows an anima-
tion conceptually similar to the moving logo in the corner of a
web browser.

Mediator as the Controller

It is important to recognize that the mediation layer
consists of more than just bidirectional adapters that
convert data between formats. It contains the control logic
that governs when and how the parts from the other layers
are used. The control logic should not be intermingled
with the adaptation logic that performs the parsing and
the static validation.

In this simple example, Mediator.divide() contains most
of the control logic (refer to Listing 2). As talked about
above, divide() is invoked by the Divide button and it pass-
es the user input fields as strings. Instead of attempting
to parse the strings directly within divide(), they are used
to create instances of a class called DivisionFrameParser.
The constructor of DivisionFrameParser accepts a string
field and parses it. The class provides methods to check if
the parsing was successful and to retrieve the field as an
integer. In this way, Mediator is focused on the interac-
tion of classes across the layers and less on processing the
shuttled data.

Alternate Uls

Mediator, DivisionFrame and ProgressDialog expose setters
to enable their dependencies to be injected prior to use. The
Main class, which serves as the entry point of the application,
wires everything up. However, with Mediator loosely-coupled
to the GUI layer, it’s possible to completely replace the user-
interface. To prove it, if you launch the application with a “-t”
command-line argument, it will run in text-mode. Text-mode
prompts the user for a dividend and divisor and it prints
results back to the console. It was made possible by providing
Mediator with alternate implementations of IDivisionFrame
and IProgressDialog.

What about a web front-end? Web applications serve
data on demand; data is not easily pushed to the browser.
This makes showing progress updates, for instance, fairly
tricky. As with text-mode, implementing a web front-end
entails creating a new GUI layer, but it will also require ad-
ditions to the mediation layer. The control logic discussed
above was designed with pushing data in mind. New
controller classes will be required for the request-response
nature of the web; however, since we separated the parsing
and validation logic from the control logic, it can be reused
in a web application.

Testing

The GUI classes do not need to be connected to Media-
tor to launch them. To demonstrate this, I inserted a main()
method into DivisionFrame that uses a mock implementation
of IDivisionFrameMediator. In this case, the division request
is simply printed out to the console.

Using mock implementations to represent the rest of the
system is an especially useful technique if you are developing

JDJ.SYS-CON.com

without the aid of a GUI builder because it will enable you

to quickly view your efforts without launching the complete
application. Mock implementations can allow you to fully
exercise the features provided by the GUI with much less
effort. For example, you do not need to induce a problem in
the real application just to make sure that error messages get
displayed correctly.

Mock implementations are also the hallmark of automated
unit testing. The online code that supplements this article
includes JUnit tests for Divider, Mediator and Division-
FrameParser. To make Mediator easier to test, I made Divider
implement IDivider, an interface that contains its single
method. The complete execution cycle for Mediator is tested
with mock implementations of IDivider, IDivisionFrame and
IProgressDialog.

RealTime Interaction

Suppose you want to alter DivisionFrame such that as you
key in dividend and divisor, the text immediately turns red if
it doesn’t represent valid numerical data as opposed to after
pressing the Divide button. You can bind a KeyListener to
the JTextFields and receive an event for every keystroke, but
where should you do the validation? One option is to delegate
the key events to Mediator and let it validate and callback Di-
visionFrame; however, that cycle of execution is significantly
different from the ones discussed above because the API layer
is never invoked.

The mediation layer provides adaptation for the API layer
and it shouldn’'t be used where the API is not needed. In this
case, the behavior is entirely specific to the user-interface and
nothing is gained by thread switching. DivisionFrameParser,
which encapsulates the static validation logic, should be used
directly inside of a KeyListener. The Mediator class remains
the same and it double checks that the fields are valid also via
DivisionFrameParser.

Listing 1

package example;

import java.lang.reflect.*;
import java.util.concurrent.*;
import java.awt.*;

public final class SwingProxy {
private static class TargetInvoker implements Runnable {

private Object target;
private Object returnvalue;
private Throwable exception;
private Method method;
private Object[] arguments;

public TargetInvoker(Object target, Method method,
Object[] arguments) {
this.target = target;
this.method = method;
this.arguments = arguments;

}

public boolean threwException() {
return exception != null;

}
public Throwable getException() {

return exception;

}

JD).SYS-CON.com

Sharing Objects

Consider a Swing application that contains a |Table with thousands of rows.
Each row is a view into a simple bean where the columns are mapped to the
bean properties. The table effectively enables the user to view and edit beans.
The API layer requires access to a collection of those beans to function. It occa-
sionally modifies bean properties and those changes should be reflected on the
front-end.

In this example, which layer owns the beans? The beans are objects that
can be manipulated by both the event-dispatching thread and worker threads
apparently violating the layer-separation rules. Breaching the layers can be
dangerous. For instance, if a worker thread were to remove a bean from the
TableModel in the middle of a repaint, the event-dispatching thread could loop
past the end of the collection and throw an exception.

Since a bean is simply a container whose methods execute in a timely man-
ner, they can be shared by all layers with a little help. First, all methods of the
bean should be synchronized to enable threads to access them atomically. For
example, a worker thread should be able to obtain a lock on a bean and read
several properties needed for a computation, knowing that all reads represent a
consistent view. Though, it must be recognized that until that lock is released,
the event-dispatching thread is potentially held up.

Second, when the APl modifies a bean property, the |Table needs to be noti-
fied so it can repaint the associated cell. The bean requires a listener, such as
java.beans.PropertyChangeListener, which is invoked by the setters. A mediator
class would implement the listener and forward the event to the TableModel
via SwingProxy to allow it to resolve the coordinates of the cell that requires
repainting. When a cell is edited by the user, TableModel.setValueAt() is called.
In that method, the event-dispatching thread would grab a lock on the bean,
remove the listener to prevent the TableModel from being called back, update
the property and restore the listener before releasing the lock.

Finally, the beans should originate from a factory class that provides a
create() method and a destroy() method, and it would notify a mediator when
either of those methods are called. In turn, the mediator would update the
interested APl collections and the TableModel in a thread-safe manner.

public Object getReturnvalue() {
return returnvalue;

}

public void run() {
try {
returnvalue = method.invoke(target, arguments);
} catch(Throwable t) {
exception = t;
}
}
}

private static class CallHandler implements InvocationHandler {

private static final ExecutorService threadPool
= Executors.newCachedThreadPool () ;

private Class targetClass;

private Object target;

public CallHandler(Object target) {
this.target = target;
this.targetClass = target.getClass();
}

public Object invoke(Object proxy, Method method, Object[] args)

throws Throwable {

Method targetMethod = targetClass.getMethod(
method.getName(), method.getParameterTypes());

57

DeskToP /N\

58

TargetInvoker targetInvoker =

FEATURE

We can get away with using DivisionFrameParser
directly inside of a KeyListener because the parsing and
validation occur almost instantly. If we required something
more advanced, such as real-time spelling and grammar
checking, then a call into the mediation layer is justified
because that kind of validation will require a specialized
API and it’s unlikely to execute as timely. However, we
must consider that every key press gets delegated to an
independent thread. If you were to type too quickly,
several threads will needlessly be processing the same
input in parallel. To resolve this issue, we need to
setup the KeyListener to take the request-response
nature of the mediation layer into account. The
KeyListener shouldn’t call into mediation layer if it’s
already validating an input field in response to a prior
key press; rather, the KeyListener should simply mark
the field as changed. When the validation is complete
and the GUTI layer is called back, that invocation can check
if the field has changed and make a successive call into the
mediation layeraccordingly.

new TargetInvoker (

target, targetMethod, args);

if (EventQueue.isDispatchThread()) {

-~

~

threadPool.execute(targetInvoker);

else if (method.getReturnType() == void.class) {
EventQueue.invokeLater (targetInvoker);
else {

EventQueue.invokeAndWait (targetInvoker) ;
if (targetInvoker.threwException()) {
throw targetInvoker.getException();
} else {
return targetInvoker.getReturnvalue();

}

return null;

}

private SwingProxy() {

}

public static Object newSwingProxy(Object target) {
return Proxy.newProxyInstance(

Listing 2

SwingProxy.class.getClassLoader()
target.getClass().getInterfaces(),
new CallHandler(target));

package example;

public class Mediator implements IProgressDialogMediator,
IDivisionFrameMediator, IDivisionListener {

private
private
private
private

IDivider divider;
IDivisionFrame divisionFrame;
IProgressDialog progressDialog;
Thread divideThread;

public void setDivider(IDivider divider) {

this.divider =

}

divider;

public void setDivisionFrame(IDivisionFrame divisionFrame) {

this.divisionFrame =

}

public void setProgressDialog(IProgressDialog progressMonitor) {

January 2007

divisionFrame;

Conclusion

Thope you find the patterns discussed here useful in your
own development efforts. The full source code including unit
tests for the division application can be found at the online
version of this article at http://jdj.sys-con.com. DivisionFrame
and ProgressDialog were created using NetBeans 5.0. Refer to
the NetBeans documentation for using the Swing Layout Exten-
sion library outside of NetBeans.

Resources

¢ Mediator pattern: http://en.wikipedia.org/wiki/Mediator_pattern

 Event-dispatching: http://java.sun.com/docs/books/tutorial/
uiswing/misc/threads.html

* SwingWorker: https://swingworker.devjava.net/

¢ Dynamic proxies: http://java.sun.com/j2se/1.3/docs/guide/
reflection/proxy.html

e Reflection: http://java.sun.com/docs/books/tutorial/reflect/
index.html

e JUnit: http://www.junit.org/index.htm

e NetBeans: http://www.netbeans.org/

this.progressDialog = progressMonitor;

public void divide(String dividendStr, String divisorStr) {

DivisionFrameParser dividendParser

= new DivisionFrameParser (dividendStr);
DivisionFrameParser divisorParser

= new DivisionFrameParser (divisorStr);
divisionFrame.showDivisionResult(“");
divisionFrame.showValid(dividendParser.isFieldvalid(),

divisorParser.isFieldvalid());

if (dividendParser.isFieldvalid()

&& divisorParser.isFieldvalid()) {

try {

progressDialog.start();

synchronized(this) {

divideThread = Thread.currentThread();

}

DivisionResult divisionResult =
dividendParser.getField(),
divisorParser.getField(), this);

synchronized(this) {

divider.divide(

divideThread = null;
}
if (divisionResult == null) {
divisionFrame.showDivisionResult(“[Cancelled]”);
} else {

divisionFrame.showDivisionResult (
divisionResult.getQuotient()
+ “ R “ + divisionResult.getRemainder());
}
catch(ArithmeticException e) {
divisionFrame.showDivisionResult (“NaN");
finally {
progressDialog.end();

~

-~

public synchronized void requestCancel() {

if (divideThread != null) {
divideThread.interrupt();

public void computationPerformed(int percentage) {

progressDialog.setProgress (“Computing...”, percentage);

JDJ.SYS-CON.com

