
Interview: JDJ Asks...Borland
Tony de la Lama answers readers’ questions about Borland and Java 22

Feature: Alternative Approaches to Marcia Gulesian

Architecting Logon and User Management A simpler route 28

Show Review: More Than Marketing Steven Berkowitz
Digging for interesting facts 34

Show Review: Atlanta Java Joey Gibson

Software Symposium ‘No Fluff, Just Stuff ’ 36

JDO Basics: Java Data Object Teresa Lau
Works transparently on any data store 42

Feature: Rebel Without a Clause Craig Dewalt & Max Tardiveau
Six ways to misuse exception handling 48

J2ME vs WAP: The Mighty WAP Strikes Out! Chuck Gautney
And J2ME is batting for wireless application development 56

Cubist Threads: Confessions of a Blair Wyman

Procedural Programmer Imposing order upon thought 82

SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL MAY 31, 2003

From the Editor
Alan Williamson pg. 5

Guest Editorial
Bernie Spang &

Dave Thomson pg. 6

J2EE Editorial
Ajit Sagar pg. 20

J2SE Editorial
Jason Bell pg. 40

J2ME Editorial
Jason R. Briggs pg. 54

FINAL CONFERENCE PROGRAM p.61

JDJEDGE CONFERENCE & EXPO MARCH 18–20, 2003

BOSTON, MA

f you have a bounty of creative

energy and way too much time on

your hands, why not explore the

new Java 1.4 APIs by creating a

video game. That’s exactly what I

did when I produced a parody of

Street Fighter II called Meat

Fighter (see Figure 1).

meat fighter

I
the wiener warriorby michael birken

J2
SE

H
om

e
J2

E
E

J2
M

E

8 MARCH 2003

“Meat Fighter” is a side-scrolling one-to-one fighting game
featuring anthropomorphic hot dogs and sausages. You can
choose from six possible players and battle through seven
stages of intensive meat fighting. So be prepared to meet the
wiener warriors: Sal Lammee, Rat Dog, Oscar M. Wiener, Hot
Doug, Cornelius Dog, and Oliver.

In this article, I present a simple framework to enable you
to quickly take advantage of full-screen animation, music, and
sound effects without learning all the intricate details of the
new APIs. (The source code for this article as well as Listings
1–4 can be downloaded from www.sys-con.com/java/
sourcec.cfm.) Check out Figures 1 and 2 for screenshots.

Getting Started with Animation
The animation in Meat Fighter, like any animation, is pro-

duced by displaying a series of still frames with minute varia-
tions in rapid succession. Each frame is generated in layers.
For instance, during combat, the background is drawn first,
followed by “background ornaments” such as the dancing crab
on the beach stage, the fighters, and finally the vitality bars at
the top. The element that appears closest to the front is the one
that was drawn last in the sequence.

If this layering were done directly to the screen, the anima-
tion would appear to flicker wildly because the process of
drawing the background erases all the foreground sprites.
Instead, each animation frame is generated on an offscreen
image buffer and transferred as a whole to the screen. To man-
age this process, I created the GraphicsSource class and the
RenderListener interface.

A class that’s interested in generating animation frames
implements RenderListener:

public interface RenderListener {

public void init(

boolean isPageFlipping,

int bufferWidth,

int bufferHeight);

public void updateModel();

public void render(Graphics g,

boolean isBufferCleared,

boolean isPageFlipping,

int bufferIndex);

}

For each frame, GraphicsSource invokes updateModel() to
update the state of the game, followed by render() to display
the state to the offscreen image buffer. init() is invoked prior to
frame generation on a different thread than the one for the
animation loop. It should be used for loading images and
sounds and for configuring the RenderListener.

All the methods of GraphicsSource are static. To initiate an
animation, pass a RenderListener implementation to
setRenderListener() and call startAnimation(). start-
Animation() expects a frame rate value in frames-per-second
(fps). Depending on the frame complexity and the speed of the
underlying hardware, maintaining the specified fps consis-
tently through an animation sequence may not be possible.
Instead, GraphicsSource tries to sustain the apparent frame
rate by assuming that the time required to update the game
state is significantly less than the time to display it. It will occa-
sionally and typically unnoticeably invoke updateModel()
more often than render() to effectively skip frames. In this way,
the game should run at approximately the same speed even on
slower computers.

GraphicsSource also provides the means to enter and exit the
full-screen exclusive mode via the methods enter-
DisplayMode() and exitDisplayMode(), respectively. The

9MARCH 2003

10 MARCH 2003

enterDisplayMode() method
requires the desired screen
resolution and will attempt to
find a mode of that size with
the highest bit depth and
refresh rate attainable. If the
graphics environment cannot
provide such a display mode,
enterDisplayMode() will cre-
ate a window with a drawing
surface of the specified
dimensions, and the game
will run outside the full-screen
mode. Since enterDisplay-
Mode() also internally config-
ures GraphicsSource for
frame rendering, it must be
the first method of
GraphicsSource invoked.

Listing 1 illustrates all
these methods. We’ll get
back to the arguments of
init() and render() in the next
section. The listing also
introduces ImageSource, a
class I created as a façade to
the javax.imageio.ImageIO
class. ImageSource provides

two static methods, getImage() and getImages(), that load a
single image and an array of images, correspondingly.

Meat Fighter uses exactly 212 GIFs placed in a directory
called images on the same level as the gamingtools directory
(see Table 1). Since this directory is within the classpath, the
program can locate the files using the system class loader:

URL fileURL = ClassLoader

.getSystemResource(IMAGES_DIR

+ fileName);

This technique works even after all the files are bundled
into a JAR, which makes deployment one step easier.

Behind the Scenes
The process of rendering to an offscreen image buffer to

reduce animation flickering is known as “double-buffering.”
The offscreen buffer is commonly referred to as the “back
buffer” and the other buffer involved, the “front buffer,” is the
area of video RAM (VRAM) that’s read from during the refresh
cycle of the monitor to set the intensities of all the pixel phos-
phors.

Double-buffering is maintained by a java.awt.image.
BufferStrategy object created by GraphicsSource.enter-
DisplayMode(). It will automatically select one of two techniques.
If the BufferStrategy employs page flipping, then both the back
and the front buffer are allocations of VRAM. The video pointer (a
register on the video card) determines which buffer is read from
during the monitor refresh cycle. By merely adjusting this pointer,
the roles of the buffers are instantly exchanged (see Figure 3). The

alternative strategy is bit blitting. In this case, the back buffer may
be stored in VRAM or in ordinary system memory. After drawing
to it is completed, it’s copied to the front buffer (see Figure 4). For
obvious reasons, bit blitting is less efficient than page flipping.

Both strategies accomplish the same goal, but they affect
how you must render each successive animation frame. To
understand why, consider how to animate Pac-Man wandering
around a maze. The simplest approach is to build up each frame
in layers as described before. Specifically, draw the entire back-
ground image of the maze and then draw Pac-Man at the new
location. But, a more efficient approach is to set up a clipping
region around the previous location of Pac-Man and then draw
the background image. We only restore the part of the maze that
was painted over the last time Pac-Man was drawn to the buffer.

With this in mind, if page flipping is used, then even frames are
not rendered to the same buffer as odd frames. This means that you
must restore the maze considering Pac-Man’s location two frames
back. If bit blitting is used, you’re always rendering to the same
buffer; you only need to consider Pac-Man’s previous position.

What makes things a little more complicated is that the
buffers used by BufferStrategy are usually of type
java.awt.image.VolatileImage. A VolatileImage offers signifi-
cant performance benefits over other kinds of images because
it stores the image contents in VRAM. However, VRAM is a lim-
ited resource and the operating system and other applications
can borrow that memory for their own purposes at any time.
For example, if a screen saver starts running in the middle of
the game, since it’s also a full screen application it will take
away at least the memory used by the front buffer. After the
screen saver stops, the VolatileImage will reallocate the VRAM,
but by then the contents of the buffer are lost.

If the game is drawing to a buffer at the moment its con-
tents are lost, no exceptions will be thrown. Instead,
BufferStrategy provides methods that indicate if the contents
of a buffer are still the same since the last time a graphics con-
text was obtained for it; this information is passed to render()
as the boolean parameter isBufferCleared. render() also
receives an integer called bufferIndex that alternates between
0 and 1 when page flipping is used to indicate which buffer g
refers to. It’s always 0 for bit blitting.

When you call setRenderListener(), GraphicsSource calls
back init() and passes it the type of buffer strategy in use, as
the boolean isPageFlipping, and the dimensions of the buffers.
GraphicsSource also assumes that the program is entering a
new animation sequence and the contents of the buffers are
no longer valid. This means that if page flipping is used as the
buffer strategy, then isBufferCleared is set to true for the first
two callbacks of render() directly after invoking
setRenderListener(). Similarly, isBufferCleared is set to true for
the first callback of render() if bit blitting is used. This saves
you the trouble of writing special logic to initialize the buffers
when the background changes for a different part of the game.

The Animation Loop
GraphicsSource.startAnimation() creates a thread that

loops and calls back the methods of RenderListener until
stopAnimation() kills it. The loop depends on high-resolution
timing to decide when to invoke updateModel() more often
than render(). I abstracted the concept of the timer into an
interface called StopWatch:

public interface StopWatch {

public void start();

public long stop();

public long getResolution();

}

J2
SE

H
om

e
J2

EE
J2

M
E

FIGURE 1 Intro sequence

FIGURE 2 Game demo

TABLE 1 Directory structure of the game

DIRECTORY DESCRIPTION
/gamingtools Reusable gaming classes not specific to Meat Fighter
/native Location of the Windows-specific timer DLL
/images Sprites and backgrounds used in Meat Fighter
/sounds Sound effects and music used in Meat Fighter
/meatfighter Meat Fighter–specific classes

12 MARCH 2003

start() begins timing and stop() returns elapsed time in
nanoseconds (10-9 seconds).

getResolution() returns the error expected in the measured
elapsed time, meaning the actual elapsed time is somewhere
in the range of the measured elapsed time plus or minus this
value.

My simplest implementation of StopWatch uses
System.currentTimeMillis(); however, as the Javadoc explains,
“While the unit of time of the return value is a millisecond, the
granularity of the value depends on the underlying operating
system and may be larger.” On my Windows XP box, I measured
the resolution to be approximately 15ms. This is not good con-
sidering that at 60fps, the frame period is less than 17ms.

The Java Media Framework (JMF) and the Java 3D API
(J3D) provide the high-resolution timers javax.media
.SystemTimeBase and com.sun.j3d.utils.timer.J3DTimer,
respectively. Although SystemTimeBase provides a
getNanoseconds() method, I found it just as inaccurate as
System.currentTimeMillis(). It may perform better on your
box. J3DTimer, on the other hand, provides excellent high-res-
olution timing with a granularity less-than 1000 ns on my
machine.

Resolution aside, the disadvantage of using these imple-
mentations is that JMF and J3D are not included as part of the
standard installation of the Java 2 Runtime Environment
(J2RE), which limits your gaming audience. So, I turned to the
Java Native Interface (JNI) and created a DLL in Visual C++
that wraps the Windows functions QueryPerformance-
Frequency() and QueryPerformanceCounter(). On application
startup, a 40KB DLL is copied to the temporary directory
defined by the system property java.io.tmpdir unless it’s
already located there. This is necessary because System.load(),
used to load the DLL, cannot access files within a JAR.

StopWatchSource provides the static method getStop-
Watch(), which obtains the best available StopWatch imple-
mentation. To do so, it creates a List and adds the
System.currentTimeMillis() implementation available on all
platforms. Next, if JMF or J3D is installed, it will add their asso-
ciated implementations. If the operating system is a version of
Windows, it adds the JNI implementation. Finally, it sorts the
List and returns the StopWatch with the highest resolution.

Listing 2 shows the animation loop in GraphicsSource that
relies on StopWatch. The loop updates the game state and ren-
ders it, and then it sleeps for any time that’s left over in the
frame period. It computes the sleep time as:

long sleepTime = PERIOD

- stopWatch.stop() - overSleepTime;

where PERIOD is the frame period and stopWatch.stop()
returns the time expended in the last iteration while not
asleep. Since Thread.sleep() is not accurate to the millisecond
either (usually off about 1ms), we measure the actual sleep
time and subtract that value from the sleep time of the suc-
cessive iteration. This is the overSleepTime.

If sleepTime is negative, the duration of the last iteration
exceeded the frame period. The overshoot, equal to
-sleepTime, is typically a fraction of a frame period; it’s added
to a total called fractions. When fractions grows larger than the
frame period, the animation is at least an entire frame behind.
To compensate, the while-loop on line 57 invokes
updateModel() for an additional fractions/PERIOD time(s)
and leaves fractions with any remainder.

It Gets Easier
To create an animation frame without redrawing the entire

background, render() requires access to the “dirty regions” of
the buffer it’s acting on. These are the rectangular areas made
“dirty” as the result of drawing sprites on top of the back-
ground. If page flipping is used as the buffer strategy, you need
to maintain two sets of dirty regions, one for each buffer. Bit
blitting requires only one set.

To automatically maintain these sets, I created an abstract
class called FrameBuilder. FrameBuilder implements the
methods of RenderListener and actually declares them final to
prevent you from overloading them. In this case, a class that
desires to generate animation frames extends FrameBuilder
and implements the five abstracts methods listed in Table 2a.

init()is called back soon after you pass the FrameBuilder ref-
erence to setRenderListener(). As before, it’s invoked on a differ-
ent thread than the one used for the animation loop; it can make
blocking calls, such as loading images and sounds, without inter-
rupting a running animation. After it returns, GraphicsSource
switches to the new class to generate the frames.

The two overloads of renderBackground() are for drawing
the entire background and for restoring a specified dirty
region. The former version is invoked when the buffer con-
tents are lost or isBackgroundSame() returns false. The latter
version is called once per dirty region and is passed a graphics
context with a clipping region set accordingly.

renderForeground() is invoked to display sprites and other
graphics on top of the background. It should use the concrete
methods listed in Table 2b. markDirtyRegion() records a dirty
region for restoration in a successive frame. drawSprite() is a
convenience method that invokes g.drawImage() followed by
markDirtyRegion().

updateState() serves exactly the same purpose as
updateModel(). An alternative method is used because
isBackgroundSame() is actually checked in FrameBuilder’s
implementation of updateModel() instead of render(). This

J2
SE

H
om

e
J2

EE
J2

M
E

FIGURE 3 Page flipping

FIGURE 4 Bit blitting

16 MARCH 2003

way FrameBuilder is able to keep track of background changes
even when frames are skipped. Note: updateModel() delegates
the call to updateState() before the check since
isBackgroundSame() depends on the current game state.

It’s important that these methods avoid creating temporary
objects because the incremental garbage collection that occurs
to clean up those objects will introduce noticeable pauses.

Listing 3 demonstrates a class that extends FrameBuilder.
Observe that the code is completely oblivious to the buffer
strategy. In this case, renderBackground() cleans up the dirty
regions by invoking its overloaded counterpart. It can do this
because its clipping region is automatically set to the dirty
region. If you’re developing a game like Pac-Man that uses tile
graphics, you should provide logic that identifies and redraws
only the dirty tiles (see Tile Graphic sidebar).

Returning to the subject of VolatileImages, sprites can also
take advantage of them for the rendering performance bene-
fits. To accomplish this, you would load an image into a non-
volatile form like a BufferedImage and then copy it to a
VolatileImage for drawing. If the contents are ever lost, you
can restore it from the nonvolatile version.

Luckily, BufferedImage already has this mechanism built in.
When a BufferedImage is drawn repeatedly to a buffer in VRAM,
Java 2D will automatically create a VolatileImage version of it so
that future rendering may perform better. This being the case,
ImageSource.getImage() returns a BufferedImage. The data lay-
out and color model is set in accordance with the graphics con-
figuration for optimal bit blitting.

Scrolling
If you load a background image wider than the screen, you

could scroll it horizontally by redrawing it at different posi-
tions; however, this means you must paint the entire back
buffer for each frame. Alternatively, you could allocate buffers
wider than the screen in VRAM and adjust the video pointer
offset so that the visible area of the front buffer changes. Since
bit blitting is not used, this type of scrolling has no impact on

performance whatsoever.
Unfortunately, Buffer-

Strategy doesn’t yet provide
fine control of the video
pointer; it’s only capable of
flipping the pointer between
buffers. As such, Meat Fighter
scrolls the background using
the former technique, which
is significantly slower.
However, the background is
not in continuous motion. It
responds to the player’s posi-
tion; it’s occasionally station-
ary and isBackgroundSame()
returns true when the back-
ground position has not
changed.

Sound Effects and Music
One of the coolest fea-

tures of Java that actually
evolved from the applet era
is a simple interface for play-
ing sound effects and music.
The static method Applet.
newAudioClip() obtains an
AudioClip from a specified
URL. AudioClip is an inter-
face with three methods:

play(), loop(), and stop(). It couldn’t be easier.
However, after calling play(), there’s no way to know when

the audio ends. Such a feature is necessary for coordinating
animation sequences with sound. For example, the animation
at the start of Meat Fighter does not enter into the demo stage
until the introductory music completely finishes.

To overcome this limitation, I created the AudioListener
interface and an extension of AudioClip called Audio:

public interface AudioListener {

public void audioStopped();

}

public interface Audio

extends AudioClip {

public void setAudioListener(

AudioListener audioListener);

public void clearAudioListener();

public void dispose();

}

A class implements AudioListener to receive notification
that a sound effect or a piece of music has completed playing.
This listener is registered with an Audio object via
setAudioListener().

Audio objects originate from the static method
AudioSource.getAudio(). AudioSource uses the same tech-
nique as ImageSource to locate files within the classpath and
it expects to find audio files in the sounds directory on the

J2
SE

H
om

e
J2

EE
J2

M
E

JAVA GAME PROFILE (JSR-134)
Imagine if you could take that Java game you’re working on, burn

it onto a CD, pop it into your PS2 or Xbox, and actually play it. As Java
programmers, we’re used to porting our applications from one platform
to another without any coding changes; why not apply the write once,
run anywhere principle to game consoles?

The Java Game Profile (JGP) is an accepted Java Specification
Request, designed with the help of companies like Sega and Sony, with
the goal of developing a platform-independent standard for game
development. Its ultimate goal is to rid the world of game ports by pro-
viding Java-based libraries capable of taking advantage of the high-
performance graphics hardware found in modern game consoles as
well as your PC. The proposal covers 2D and 3D graphics, streaming
media, sound, controllers, physics modeling, and network communica-
tions, among other topics. It highly promotes leveraging existing APIs
whenever possible and creating new APIs as needed to fill in the gaps.
A game-specific API in the javax.games package would act as a layer
above them all. For example, the proposal suggests classes for model-
ing features commonly found in game characters that rest on top of the
Java 3D API.

Sony already encourages hobbyists to develop for the PS2 via its
$200 Linux Kit. The kit includes a 40GB hard drive, an Ethernet adapter,
keyboard, mouse, monitor cables, and the Linux software, which effec-
tively turns the PS2 into a desktop computer. However, until Sun
releases a JVM for it, it looks like you’ll be stuck with gcc.

As for the Xbox, since it took a federal court to order Microsoft to
distribute a modern JVM with Windows, it does not seem likely that
Microsoft will participate in the JGP anytime soon. Almost unsurpris-
ingly, hackers have managed to get a version of Linux running on the
Xbox. But, if the JGP is going to be an attractive option for game com-
panies as well as hobbyists, more console manufacturers will need to
get involved.

You can view JSR-134 at www.jcp.org/en/jsr/detail?id=134. The
JGP white paper, a document presented at the Game Developers
Conference 2002 detailing JGP beyond JSR-134, has not been
released to the Web at the time of this writing.

FIGURE 5 Implementations of Audio

TABLE 2 Methods of FrameBuilder

(2A) ABSTRACT METHODS
void init()
void updateState()
boolean isBackgroundSame()
void renderBackground(Graphics g)
void renderBackground(Graphics g, int x, int y, int width, int height)
void renderForeground(Graphics g)

(2B) CONCRETE METHODS
void drawSprite(Graphics g, Image image, int x, int y)
void markDirtyRegion(int x, int y, int width, int height)

18 MARCH 2003

same level as the gamingtools directory (see Table 1). Call dis-
pose() after an Audio object is no longer required to release
system resources that it may be holding. Listing 4 demon-
strates how to create an Audio object and how to associate an
AudioListener with it.

AudioSource.getAudio() returns one of three implementa-
tions of Audio depending on the file type (see Figure 5).
SoundEffect and MidiMusic use the Java Sound API, which is
part of the current J2RE installation, to provide sampled and
synthesized sound, respectively. SoundEffect is capable of
playing AIFF-C, AIFF, AU, SND, and WAVE files, and MidiMusic
is capable of playing MIDI files. The quality of synthesized
sound will vary depending upon which soundbank was
shipped with the J2RE. A soundbank contains sound samples
for an array of instruments. Typically, the J2RE installation
includes the smallest and lowest quality one. See the links in
the References section for information on how to determine
which soundbank you’re using and where to get a better one if
required.

The Java Sound API does not provide support for MP3 files
as of this time; however, the Java Media Framework (JMF)
does and it’s used by JMFSound. JMFSound is actually capable
of playing all the sound file formats mentioned earlier in addi-
tion to MP3. The disadvantage of using it, as mentioned previ-
ously, is that JMF is not included in the standard J2RE installa-
tion. Note: The latest release of JMF actually removes some
MP3 functionality due to “licensing issues,” but you should
still be able to play them under Windows.

Deployment
I JARred up all the resources into meatfighter.jar using this

command:

jar cvfm meatfighter.jar theManifest

gamingtools meatfighter native

images sounds

The m option directs the JAR utility to use the manifest file,
theManifest, instead of creating a default one. TheManifest is
a one-line text file that specifies the class containing the
main() method:

Main-Class: meatfighter.MeatFighter

You can launch Meat Fighter via:

java -jar meatfighter.jar

Alternatively, under Windows, you can double-click on the
JAR to start it.

To promote reusability, I also created gamingtools.jar,
which contains the gamingtools package and the native direc-
tory. You can find these JARs along with their complete sources
on my Web site, www.meatfighter.com. All the code is covered
by the GNU General Public License, so feel free to redistribute,
modify, and use it in your own programs at no cost.

Conclusion
Since I posted Meat Fighter, I’ve received only positive

feedback and a wealth of questions from enthusiastic Java
game programming hobbyists. I hope this article has demysti-
fied many of the aspects of animation and sound and serves as
a springboard for your creative energy. Unfortunately, at least
for now, Game Over Man!

References
• Meat Fighter: www.meatfighter.com
• Full-Screen Exclusive Mode API: http://java.sun.

com/docs/books/tutorial/extra/fullscreen/
• Java Image I/O API: http://java.sun.com/j2se/

1.4.1/docs/guide/imageio/
• The VolatileImage API User Guide: ftp://ftp.java

.sun.com/docs/j2se1.4/VolatileImage.pdf
• Java Sound API: http://java.sun.com/products/java-

media/sound/
• Java 3D API: http://java.sun.com/products/java-media/

3D/
• Java Media Framework: http://java.sun.com/products

/java-media/jmf/
• Java Native Interface: http://java.sun.com/docs/books

/tutorial/native1.1/
• JSR-134: www.jcp.org/en/jsr/detail?id=134
• PlayStation 2 Linux Community: http://playstation2-

linux.com/
• Xbox Linux Project: http://xbox-linux.sourceforge.net/
• Nintendo Entertainment System Architecture: www

.zophar.net/tech/files/nes.txt
• Swing Sightings Volume 3: http://java.sun.com

/products/jfc/tsc/sightings/S03.html
• Java Gaming: www.javagaming.org
• Video Game Music Archive: www.vgmusic.com/
• Drawing Tablets: www.wacom.com
• History of Street Fighter: www.videogames.com/

features/universal/sfhistory/

J2
SE

H
om

e
J2

EE
J2

M
E

o__1@hotmail.com

TILE GRAPHICS
Tile graphics evolved from the earliest text-based games, where

ASCII characters were arranged to form images of maps and objects in
the game world. In those days, tiles served two primary purposes. First,
they saved precious ROM space. For example, the 224x288 maze in
Pac-Man actually consisted of 28x36 square tiles, each 8x8 pixels in
size. Second, tiles provided a convenient method of bestowing a
repeated behavior upon the game world. For instance, in Super Mario
Brothers, the tiles that Mario walked on, which often hung in midair, all
shared the behavior of a floor-like surface. Modern releases for sys-
tems like the handheld Nintendo Game Boy Advance still use tile graph-
ics for exactly the same reasons.

To use FrameBuilder for a game like Pac-Man, you need a way to
transform a dirty region into a set of dirty tiles. Assume the 28x36 maze
is represented as a two-dimensional integer array of constants, each
associated with a particular tile graphic. The ghost monsters and Pac-
Man consist of 16x16 pixel sprites; rendering any of them means mak-
ing nine of the 8x8 background tiles dirty. Given a sprite position (x,y),
you can find its corresponding array element by dividing each coordi-
nate by 8. Alternatively, you can right-shift by 3, an equivalent opera-
tion that takes less time to execute. Apply this to opposite corners of
the sprite to compute the dirty tile region. Note: Pac-pellets are back-
ground tiles, not sprites. As Pac-Man gobbles them up, adjust the array
elements accordingly and Pac-Man’s position will automatically force
the pellet tiles to be repainted.

A Super Mario Brothers type game presents a different challenge
because the tiled backgrounds are one screen high and multiple
screens wide. The Nintendo Entertainment System used 8x8 pixel tiles
in a 32x28 grid to form 256x224 sized screens. Its hardware provided
a wraparound buffer and the ability to adjust the video pointer within
the buffer for scrolling. Since BufferStrategy does not support an equiv-
alent, the entire back buffer needs to be repainted for each frame. One
approach is to maintain two screen-sized segments of the background
as BufferedImages and scroll from one to the other by drawing them
end-to-end. As the first image is scrolled off, it would be incremental-
ly updated one new column of tiles at a time. When the second image
is completely in view, the first is ready to serve as the next segment.

AUTHOR BIO
Michael Birken is actively

involved in the design and
research of emerging

trading technologies at a
Manhattan-based financial
software company. He’s a

Sun Certified Java
programmer and

developer. Michael holds a
BS in computer

engineering from Columbia
University. Michael is a

vegetarian.

