
The Nintendo Gameboy.

The GameBoy is a toy. Or is it?

I will be clear from day one: the GameBoy is a toy. And a
pretty good one too. I never played with one until a few
weeks ago, when I was at a family gathering. The kids
left it for what it was. The moment I picked the damned
thing up, I recognized that this machine has a lot more to
offer than entertainment for adolescent fingers. So I
started to dig something deeper into the world of the
GameBoy...

After some websearching it became clear that the
GameBoy is a damn fine gameconsole that allowed
formidable abuse as a microcontroller. As you can see,
the exterior of the GameBoy has:

a. An attractive handheld case
b. A crisp colour LCD of 160 x 144 pixels
c. Full cursor keypad
d. Two big general purpose push buttons for, say, Enter and Escape
e. Two auxilliary (smaller) push buttons
f. An acceptable speaker
g. A headphone jack for stereo sound
h. An expansion port
i. A serial link cable
j. A bidirectional infrared comm port

Now, this is quite good for any kind of controller you want to use. In fact, the Elektor
magazine (see www.elektor-electronics.co.uk) made a fully functional digital storage
scope (DSO) out of this small computer. In fact, they didn't make it. They bought the
idea from a guy from the UK.

Under the hood.

http://www.elektor-electronics.co.uk/

Time to
take a
look
inside.
First you
need to
remove
the
screws.
This
looks a
bit hard
(three-
wing
screws)
but if y
take a
small

instruments screw driver and apply some force, you can turn the screws out quite easily.
There are 6 screws; two are inside the battery compartment.

ou

Now you can lift the back cover off to reveal the inside. Not much to see. Half of the
inside is a white PCB plane, followed by the 32 pin ROM/expansion port and then the
actual computing area. Which is what you see on the left.

From left to right we see the on/off switch, the 32 KB SRAM, CPU and crystal and then
the audio volume control plus the datalink socket. Upper middle is the connector for the
LCD and upper right is the IR circuitry. And that's just about it. The CPU is a high
integration kind with lots of I/O ports on the die. The 256 byte bootstraploader is on this
CPU.

The processor.

The CPU
is a
stripped
down
version
of the
Zilog
Z80A. It
lacks a
lot of
instructio
ns and
some
registers
but it
packs a
lot of
punch in
a big
(128 pin)

package.

For microcontroller applications this reduction is no big deal. We don't need 23
registers. The usual 7 will do perfectly well. On the left we see the main trio again. The
LH52256 is the 32 KB SRAM that is mapped to part of the upper 32 KB of the address
space via bankswitching. Above it is the LCD controller and to the right we see our
beloved Z80 clone.

I took the liberty to borrow some figures from related websites:

o Circuit layout of Gameboy (monochrome)
o Schematic overview
o Link-cable and expansion port layout

Game cartridges.

http://verhoeven272.nl/fruttenboel/Gameboy/GBmain.gif
http://verhoeven272.nl/fruttenboel/Gameboy/GBintern.gif
http://verhoeven272.nl/fruttenboel/Gameboy/GBpins.gif

On the left,
you see a
game
cartridge.
This one is
from 'V-
rally', a quite
addictive
game, if (or
perhaps
especially)
you don't
have a
driver's
license. It
shows what's
inside a
typical
Gameboy
game
cartridge. I'll
be concise:
not much. A
ROM chip
containing
the actual
game, plus a

MBC controller.
n

The MBC is the Memory Bank Controller. Most ROM's are over 128 KB in size so
there must be some kind of paging or bankswitching in order to map the big ROM
space into the 16 bit memory map of the Z80 processor. That's where the MBC comes
in. In a separate topic, I have traced all the signal lines in the cartridge and put them in
tables for easier overview.

The parts we see in this picture are:

• The plastic case. It fixes the position of the PCB with respect to the I/O
connector. It uses the big round hole in the left and the small plastic pin on the
far right (just above pin 17 of the ROM).

• The I/O bus connector fingers bring out the full address and data busses plus
some control circuitry. The fingers are gold plated and the Power and Ground
planes are well layed out.

• Above the rectangular holes there is room for two axial capacitors for
decoupling and one for mounting a solid tantalum electrolytical capacitor. In
this case, neither is used.

• The Memory Bank Controller is in the top right section. MBC1 is a 24 pin
surface mount circuit. It maps the 128 KB ROM in 16 KB windows into the Z80
memory map.

• The ROM is in the lower right. It's a 32 pin device. It gets the lower 15 address
lines from the CPU and the rest comes from the MBC.

Inside a Gameboy cartridge.

The most
popular name
for a
Gameboy
game-
cartridge is
'cart'. I will
use that name
throughout
this site since
it saves on
typing.

A cart
contains the
ROM that is
neede to start
the game. T
ROM in fact
IS the game
It is mapped
in the lower
32 KB of the
memory
The bottom
16 KB is
fixed, the

resst of the ROM is mapped in the second 16 KB of the memory map, using bank
switching. For this purpose the Memory Bank Controller (MBC) is present. The
cartridges I took apart all have the MBC-1 inside so I will only pay attention to this
particular one. Please read the documentation section (see navigator) for all details. If
you don't see a navigator,

he

.

map.

click here.

As I explained before, the most important parts of the game cart are:

 The 32 pin I/O connector
 The MBC chip (top)

http://verhoeven272.nl/fruttenboel/Gameboy/index.html

 The ROM chip (bottom)

For this particular cart, I removed the ROM and traced all signal lines, which I will tell
about in the remainder of this page.

This cart is meant to become a kind of docking station for hardware extensions. I'm not
sure how I will do it. There are roughly two methods right now:

a. Connect a flatcable between the ROM connections to a ZIF socket for an
external ROM and run all the I/O signals to a 34 pin header for external circuitry

b. Only lead the I/O connector pins out

The first option is best since I will be able to use the original MBC for bankswitching.
On the other hand, a home made application that is not a game will rarely need more
than 16 KB of object code, so the necessity of bankswitching will be very low. Time
will tell what is the best method.

Signal pins of the I/O connector

I/O
pin Signal name ROM MBC

1 +5 Volts 32 24

2 CLK / 4

3 /WR 22

4 /RD 24 11

5 /CS 23

6 A0 12

7 A1 11

8 A2 10

9 A3 9

10 A4 8

11 A5 7

12 A6 6

13 A7 5

14 A8 27

15 A9 26

16 A10 23

17 A11 25

18 A12 4

19 A13 20 19

20 A14 20

21 A15 22 21

22 D0 13 1

23 D1 14 2

24 D2 15 3

25 D3 17 4

26 D4 18 5

27 D5 19

28 D6 20

29 D7 21

30 /RESET 10

31 Audio in

32 Ground 16 12

The bankswitcher.

Below, I show how the ROM and the MBC are interconnected. Of course this is just
one example and a simple one too, but it shows how the hardware of the bankswitching
took place.
Bankswitching was done by writing to some specific pages in the ROM area. Since the
ROM doesn't react on Write pulses, the MBC can be programmed without any side
effects. If someone is to install an EEPROM here, care must be taken however.

 ROM pinout & connections MBC pinout &
connections

 +----- v -----+ +----- v --
---+
 GND 1 -| NC Vcc |- 32 +5V D0 1 -|
|- 24 +5V

 MBC16 2 -| A16 A18 |- 31 MBC14 D1 2 -|
|o 23 CS
 MBC17 3 -| A15 A17 |- 30 MBC15 D2 3 -|
|o 22 WR
 A12 4 -| A12 A14 |- 29 MBC6 D3 4 -|
|- 21 A15
 A7 5 -| A7 A13 |- 28 A13 D4 5 -| M
|- 20 A14
 A6 6 -| A6 A8 |- 26 A8 A14' 6 -| B
|- 19 A13
 A5 7 -| A5 R A9 |- 25 A9 GND 7 -| C
|- 18 ??
 A4 8 -| A4 O A11 |- 24 A11 +5V 8 -|
|- 17 A15'
 A3 9 -| A3 M RD |o 24 /RD GND 9 -| 1
|- 16 A16'
 A2 10 -| A2 A10 |- 23 A10 RESET 10 o|
|- 15 A17'
 A1 11 -| A1 CS |o 22 A15 RD 11 o|
|- 14 A18'
 A0 12 -| A0 D7 |- 21 D7 GND 12 -|
|- 13 GND
 D0 13 -| D0 D6 |- 20 D6 +----------
---+
 D1 14 -| D1 D5 |- 19 D5
 D2 15 -| D2 D4 |- 18 D4
 GND 16 -| GND D3 |- 17 D3
 +-------------+
 | | | |
 | | | | | |
 | | +---------o--- | -- | ------ Internal function
 | | | |
 | +-------------------o -- | ------ Pin number
 | |
 +-----------------------------o------- Connection with Gameboy
I/O connector

I'm not sure what pin 18 of the MBC is connected to. It is not connected on my cart, so I
can only guess what it's for. The most probable guess is that it is A19', i.e. the
bankswitchable A19. If you know what it's for, let me know. The E-mail address is in
the topright section of the navigator frame.

According to Dr Pan's text, the MBC-1 should be able to address 2 megabyte ROM's so
it needs 21 address line for this. A0 - A13 come from the CPU. So the MBC-1 will need
to generate A14 upto and including A20. So most probaly the pins now assignd to GND
(except pin 12) can be the extra address lines.

Pan Docs

Overview
About the Pan Docs
Game Boy Technical Data

http://verhoeven272.nl/fruttenboel/Gameboy/index.html
http://verhoeven272.nl/fruttenboel/Gameboy/pandocs.html.gz

Memory Map

I/O Ports
Video Display
Sound Controller
Joypad Input
Serial Data Transfer (Link Cable)
Timer and Divider Registers
Interrupts
CGB Registers
SGB Functions

CPU Specifications
CPU Registers and Flags
CPU Instruction Set
CPU Comparision with Z80

Cartridges
The Cartridge Header
Memory Bank Controllers
Gamegenie/Shark Cheats

Other
Power Up Sequence
Reducing Power Consumption
Sprite RAM Bug
External Connectors

 About the Pan Docs

 ===
 Everything You Always Wanted To Know About GAMEBOY *
 ===

 * but were afraid to ask

 Pan of -ATX- Document Updated by contributions from:
 Marat Fayzullin, Pascal Felber, Paul Robson, Martin Korth
 CPU, SGB, CGB, AUX specs by Martin Korth

 Last updated 10/2001 by nocash
 Previously updated 4-Mar-98 by kOOPa

Forward
The following was typed up for informational purposes regarding the inner workings on

the hand-held game machine known as GameBoy, manufactured and designed by
Nintendo Co., LTD. This info is presented to inform a user on how their Game Boy
works and what makes it "tick". GameBoy is copyrighted by Nintendo Co., LTD. Any
reference to copyrighted material is not presented for monetary gain, but for educational
purposes and higher learning.

Available Document Formats
The present version of this document is available in Text and Html format:
 http://www.work.de/nocash/pandocs.txt
 http://www.work.de/nocash/pandocs.htm

Also, a copy of this document is included in the manual of newer versions of the no$gmb
debugger, because of recent piracy attacks (many thanks and best wishes go to hell) I
have currently no intention to publish any such or further no$gmb updates though.

 Game Boy Technical Data

 CPU - 8-bit (Similar to the Z80 processor)
 Clock Speed - 4.194304MHz (4.295454MHz for SGB, max. 8.4MHz for CGB)
 Work RAM - 8K Byte (32K Byte for CGB)
 Video RAM - 8K Byte (16K Byte for CGB)
 Screen Size - 2.6"
 Resolution - 160x144 (20x18 tiles)
 Max sprites - Max 40 per screen, 10 per line
 Sprite sizes - 8x8 or 8x16
 Palettes - 1x4 BG, 2x3 OBJ (for CGB: 8x4 BG, 8x3 OBJ)
 Colors - 4 grayshades (32768 colors for CGB)
 Horiz Sync - 9198 KHz (9420 KHz for SGB)
 Vert Sync - 59.73 Hz (61.17 Hz for SGB)
 Sound - 4 channels with stereo sound
 Power - DC6V 0.7W (DC3V 0.7W for GB Pocket, DC3V 0.6W for CGB)

 Memory Map

The gameboy is having a 16bit address bus, that is used to address ROM, RAM, and I/O
registers.

General Memory Map
 0000-3FFF 16KB ROM Bank 00 (in cartridge, fixed at bank 00)
 4000-7FFF 16KB ROM Bank 01..NN (in cartridge, switchable bank
number)
 8000-9FFF 8KB Video RAM (VRAM) (switchable bank 0-1 in CGB Mode)
 A000-BFFF 8KB External RAM (in cartridge, switchable bank, if
any)
 C000-CFFF 4KB Work RAM Bank 0 (WRAM)
 D000-DFFF 4KB Work RAM Bank 1 (WRAM) (switchable bank 1-7 in CGB
Mode)
 E000-FDFF Same as C000-DDFF (ECHO) (typically not used)

 FE00-FE9F Sprite Attribute Table (OAM)
 FEA0-FEFF Not Usable
 FF00-FF7F I/O Ports
 FF80-FFFE High RAM (HRAM)
 FFFF Interrupt Enable Register

Jump Vectors in First ROM Bank
The following addresses are supposed to be used as jump vectors:
 0000,0008,0010,0018,0020,0028,0030,0038 for RST commands
 0040,0048,0050,0058,0060 for Interrupts

However, the memory may be used for any other purpose in case that your program
doesn't use any (or only some) RST commands or Interrupts. RST commands are 1-byte
opcodes that work similiar to CALL opcodes, except that the destination address is fixed.

Cartridge Header in First ROM Bank
The memory at 0100-014F contains the cartridge header. This area contains information
about the program, its entry point, checksums, information about the used MBC chip, the
ROM and RAM sizes, etc. Most of the bytes in this area are required to be specified
correctly. For more information read the chapter about The Cartridge Header.

External Memory and Hardware
The areas from 0000-7FFF and A000-BFFF may be used to connect external hardware.
The first area is typically used to address ROM (read only, of course), cartridges with
Memory Bank Controllers (MBCs) are additionally using this area to output data (write
only) to the MBC chip. The second area is often used to address external RAM, or to
address other external hardware (Real Time Clock, etc). External memory is often battery
buffered, and may hold saved game positions and high scrore tables (etc.) even when the
gameboy is turned of, or when the cartridge is removed. For specific information read the
chapter about Memory Bank Controllers.

 Video Display

Video I/O Registers
LCD Control Register
LCD Status Register
LCD Interrupts
LCD Position and Scrolling
LCD Monochrome Palettes
LCD Color Palettes (CGB only)
LCD VRAM Bank (CGB only)
LCD OAM DMA Transfers
LCD VRAM DMA Transfers (CGB only)

Video Memory
VRAM Tile Data

VRAM Background Maps
VRAM Sprite Attribute Table (OAM)
Accessing VRAM and OAM

 LCD Control Register

FF40 - LCDC - LCD Control (R/W)
 Bit 7 - LCD Display Enable (0=Off, 1=On)
 Bit 6 - Window Tile Map Display Select (0=9800-9BFF, 1=9C00-9FFF)
 Bit 5 - Window Display Enable (0=Off, 1=On)
 Bit 4 - BG & Window Tile Data Select (0=8800-97FF, 1=8000-8FFF)
 Bit 3 - BG Tile Map Display Select (0=9800-9BFF, 1=9C00-9FFF)
 Bit 2 - OBJ (Sprite) Size (0=8x8, 1=8x16)
 Bit 1 - OBJ (Sprite) Display Enable (0=Off, 1=On)
 Bit 0 - BG Display (for CGB see below) (0=Off, 1=On)

LCDC.7 - LCD Display Enable
CAUTION: Stopping LCD operation (Bit 7 from 1 to 0) may be performed during V-
Blank ONLY, disabeling the display outside of the V-Blank period may damage the
hardware. This appears to be a serious issue, Nintendo is reported to reject any games
that do not follow this rule.
V-blank can be confirmed when the value of LY is greater than or equal to 144. When the
display is disabled the screen is blank (white), and VRAM and OAM can be accessed
freely.

--- LCDC.0 has different Meanings depending on Gameboy Type ---

LCDC.0 - 1) Monochrome Gameboy and SGB: BG Display
When Bit 0 is cleared, the background becomes blank (white). Window and Sprites may
still be displayed (if enabled in Bit 1 and/or Bit 5).

LCDC.0 - 2) CGB in CGB Mode: BG and Window Master Priority
When Bit 0 is cleared, the background and window lose their priority - the sprites will be
always displayed on top of background and window, independently of the priority flags
in OAM and BG Map attributes.

LCDC.0 - 3) CGB in Non CGB Mode: BG and Window Display
When Bit 0 is cleared, both background and window become blank (white), ie. the
Window Display Bit (Bit 5) is ignored in that case. Only Sprites may still be displayed (if
enabled in Bit 1).
This is a possible compatibility problem - any monochrome games (if any) that disable
the background, but still want to display the window wouldn't work properly on CGBs.

 LCD Status Register

FF41 - STAT - LCDC Status (R/W)
 Bit 6 - LYC=LY Coincidence Interrupt (1=Enable) (Read/Write)
 Bit 5 - Mode 2 OAM Interrupt (1=Enable) (Read/Write)
 Bit 4 - Mode 1 V-Blank Interrupt (1=Enable) (Read/Write)
 Bit 3 - Mode 0 H-Blank Interrupt (1=Enable) (Read/Write)
 Bit 2 - Coincidence Flag (0:LYC<>LY, 1:LYC=LY) (Read Only)
 Bit 1-0 - Mode Flag (Mode 0-3, see below) (Read Only)
 0: During H-Blank
 1: During V-Blank
 2: During Searching OAM-RAM
 3: During Transfering Data to LCD Driver

The two lower STAT bits show the current status of the LCD controller.
 Mode 0: The LCD controller is in the H-Blank period and
 the CPU can access both the display RAM (8000h-9FFFh)
 and OAM (FE00h-FE9Fh)

 Mode 1: The LCD contoller is in the V-Blank period (or the
 display is disabled) and the CPU can access both the
 display RAM (8000h-9FFFh) and OAM (FE00h-FE9Fh)

 Mode 2: The LCD controller is reading from OAM memory.
 The CPU <cannot> access OAM memory (FE00h-FE9Fh)
 during this period.

 Mode 3: The LCD controller is reading from both OAM and VRAM,
 The CPU <cannot> access OAM and VRAM during this period.
 CGB Mode: Cannot access Palette Data (FF69,FF6B) either.

The following are typical when the display is enabled:
 Mode 2 2_____2_____2_____2_____2_____2___________________2____
 Mode 3 _33____33____33____33____33____33__________________3___
 Mode 0 ___000___000___000___000___000___000________________000
 Mode 1 ____________________________________11111111111111_____

The Mode Flag goes through the values 0, 2, and 3 at a cycle of about 109uS. 0 is present
about 48.6uS, 2 about 19uS, and 3 about 41uS. This is interrupted every 16.6ms by the
VBlank (1). The mode flag stays set at 1 for about 1.08 ms.

Mode 0 is present between 201-207 clks, 2 about 77-83 clks, and 3 about 169-175 clks. A
complete cycle through these states takes 456 clks. VBlank lasts 4560 clks. A complete
screen refresh occurs every 70224 clks.)

 LCD Interrupts

INT 40 - V-Blank Interrupt

The V-Blank interrupt occurs ca. 59.7 times a second on a regular GB and ca. 61.1 times
a second on a Super GB (SGB). This interrupt occurs at the beginning of the V-Blank
period (LY=144).
During this period video hardware is not using video ram so it may be freely accessed.
This period lasts approximately 1.1 milliseconds.

INT 48 - LCDC Status Interrupt
There are various reasons for this interrupt to occur as described by the STAT register
($FF40). One very popular reason is to indicate to the user when the video hardware is
about to redraw a given LCD line. This can be useful for dynamically controlling the
SCX/SCY registers ($FF43/$FF42) to perform special video effects.

 LCD Position and Scrolling

FF42 - SCY - Scroll Y (R/W)
FF43 - SCX - Scroll X (R/W)
Specifies the position in the 256x256 pixels BG map (32x32 tiles) which is to be
displayed at the upper/left LCD display position.
Values in range from 0-255 may be used for X/Y each, the video controller automatically
wraps back to the upper (left) position in BG map when drawing exceeds the lower
(right) border of the BG map area.

FF44 - LY - LCDC Y-Coordinate (R)
The LY indicates the vertical line to which the present data is transferred to the LCD
Driver. The LY can take on any value between 0 through 153. The values between 144
and 153 indicate the V-Blank period. Writing will reset the counter.

FF45 - LYC - LY Compare (R/W)
The gameboy permanently compares the value of the LYC and LY registers. When both
values are identical, the coincident bit in the STAT register becomes set, and (if enabled)
a STAT interrupt is requested.

FF4A - WY - Window Y Position (R/W)
FF4B - WX - Window X Position minus 7 (R/W)
Specifies the upper/left positions of the Window area. (The window is an alternate
background area which can be displayed above of the normal background. OBJs (sprites)
may be still displayed above or behinf the window, just as for normal BG.)
The window becomes visible (if enabled) when positions are set in range WX=0..166,
WY=0..143. A postion of WX=7, WY=0 locates the window at upper left, it is then
completly covering normal background.

 LCD Monochrome Palettes

FF47 - BGP - BG Palette Data (R/W) - Non CGB Mode Only
This register assigns gray shades to the color numbers of the BG and Window tiles.
 Bit 7-6 - Shade for Color Number 3
 Bit 5-4 - Shade for Color Number 2
 Bit 3-2 - Shade for Color Number 1
 Bit 1-0 - Shade for Color Number 0

The four possible gray shades are:
 0 White
 1 Light gray
 2 Dark gray
 3 Black

In CGB Mode the Color Palettes are taken from CGB Palette Memory instead.

FF48 - OBP0 - Object Palette 0 Data (R/W) - Non CGB Mode Only
This register assigns gray shades for sprite palette 0. It works exactly as BGP (FF47),
except that the lower two bits aren't used because sprite data 00 is transparent.

FF49 - OBP1 - Object Palette 1 Data (R/W) - Non CGB Mode Only
This register assigns gray shades for sprite palette 1. It works exactly as BGP (FF47),
except that the lower two bits aren't used because sprite data 00 is transparent.

 LCD Color Palettes (CGB only)

FF68 - BCPS/BGPI - CGB Mode Only - Background Palette Index
This register is used to address a byte in the CGBs Background Palette Memory. Each
two byte in that memory define a color value. The first 8 bytes define Color 0-3 of Palette
0 (BGP0), and so on for BGP1-7.
 Bit 0-5 Index (00-3F)
 Bit 7 Auto Increment (0=Disabled, 1=Increment after Writing)

Data can be read/written to/from the specified index address through Register FF69.
When the Auto Increment Bit is set then the index is automatically incremented after
each <write> to FF69. Auto Increment has no effect when <reading> from FF69, so the
index must be manually incremented in that case.

FF69 - BCPD/BGPD - CGB Mode Only - Background Palette Data
This register allows to read/write data to the CGBs Background Palette Memory,
addressed through Register FF68.
Each color is defined by two bytes (Bit 0-7 in first byte).
 Bit 0-4 Red Intensity (00-1F)
 Bit 5-9 Green Intensity (00-1F)
 Bit 10-14 Blue Intensity (00-1F)

Much like VRAM, Data in Palette Memory cannot be read/written during the time when
the LCD Controller is reading from it. (That is when the STAT register indicates Mode
3).
Note: Initially all background colors are initialized as white.

FF6A - OCPS/OBPI - CGB Mode Only - Sprite Palette Index
FF6B - OCPD/OBPD - CGB Mode Only - Sprite Palette Data
These registers are used to initialize the Sprite Palettes OBP0-7, identically as described
above for Background Palettes. Note that four colors may be defined for each OBP
Palettes - but only Color 1-3 of each Sprite Palette can be displayed, Color 0 is always
transparent, and can be initialized to a don't care value.
Note: Initially all sprite colors are uninitialized.

RGB Translation by CGBs
When developing graphics on PCs, note that the RGB values will have different
appearance on CGB displays as on VGA monitors:
The highest intensity will produce Light Gray color rather than White. The intensities are
not linear; the values 10h-1Fh will all appear very bright, while medium and darker
colors are ranged at 00h-0Fh.
The CGB display will mix colors quite oddly, increasing intensity of only one R,G,B
color will also influence the other two R,G,B colors.
For example, a color setting of 03EFh (Blue=0, Green=1Fh, Red=0Fh) will appear as
Neon Green on VGA displays, but on the CGB it'll produce a decently washed out
Yellow.

RGB Translation by GBAs
Even though GBA is described to be compatible to CGB games, most CGB games are
completely unplayable on GBAs because most colors are invisible (black). Of course,
colors such like Black and White will appear the same on both CGB and GBA, but
medium intensities are arranged completely different.
Intensities in range 00h..0Fh are invisible/black (unless eventually under best sunlight
circumstances, and when gazing at the screen under obscure viewing angles),
unfortunately, these intensities are regulary used by most existing CGB games for
medium and darker colors.
Newer CGB games may avoid this effect by changing palette data when detecting GBA
hardware. A relative simple method would be using the formula GBA=CGB/2+10h for
each R,G,B intensity, probably the result won't be perfect, and (once colors became
visible) it may turn out that the color mixing is different also, anyways, it'd be still ways
better than no conversion.
Asides, this translation method should have been VERY easy to implement in GBA
hardware directly, even though Nintendo obviously failed to do so. How did they say,
This seal is your assurance for excellence in workmanship and so on?

 LCD VRAM Bank (CGB only)

FF4F - VBK - CGB Mode Only - VRAM Bank
This 1bit register selects the current Video Memory (VRAM) Bank.
 Bit 0 - VRAM Bank (0-1)

Bank 0 contains 192 Tiles, and two background maps, just as for monochrome games.
Bank 1 contains another 192 Tiles, and color attribute maps for the background maps in
bank 0.

 LCD OAM DMA Transfers

FF46 - DMA - DMA Transfer and Start Address (W)
Writing to this register launches a DMA transfer from ROM or RAM to OAM memory
(sprite attribute table). The written value specifies the transfer source address divided by
100h, ie. source & destination are:
 Source: XX00-XX9F ;XX in range from 00-F1h
 Destination: FE00-FE9F

It takes 160 microseconds until the transfer has completed (80 microseconds in CGB
Double Speed Mode), during this time the CPU can access only HRAM (memory at
FF80-FFFE). For this reason, the programmer must copy a short procedure into HRAM,
and use this procedure to start the transfer from inside HRAM, and wait until the transfer
has finished:
 ld (0FF46h),a ;start DMA transfer, a=start address/100h
 ld a,28h ;delay...
 wait: ;total 5x40 cycles, approx 200ms
 dec a ;1 cycle
 jr nz,wait ;4 cycles

Most programs are executing this procedure from inside of their VBlank procedure, but it
is possible to execute it during display redraw also, allowing to display more than 40
sprites on the screen (ie. for example 40 sprites in upper half, and other 40 sprites in
lower half of the screen).

 LCD VRAM DMA Transfers (CGB only)

FF51 - HDMA1 - CGB Mode Only - New DMA Source, High
FF52 - HDMA2 - CGB Mode Only - New DMA Source, Low
FF53 - HDMA3 - CGB Mode Only - New DMA Destination, High
FF54 - HDMA4 - CGB Mode Only - New DMA Destination, Low
FF55 - HDMA5 - CGB Mode Only - New DMA Length/Mode/Start
These registers are used to initiate a DMA transfer from ROM or RAM to VRAM. The
Source Start Address may be located at 0000-7FF0 or A000-DFF0, the lower four bits of
the address are ignored (treated as zero). The Destination Start Address may be located at
8000-9FF0, the lower four bits of the address are ignored (treated as zero), the upper 3
bits are ignored either (destination is always in VRAM).

Writing to FF55 starts the transfer, the lower 7 bits of FF55 specify the Transfer Length
(divided by 10h, minus 1). Ie. lengths of 10h-800h bytes can be defined by the values
00h-7Fh. And the upper bit of FF55 indicates the Transfer Mode:

Bit7=0 - General Purpose DMA
When using this transfer method, all data is transferred at once. The execution of the
program is halted until the transfer has completed. Note that the General Purpose DMA
blindly attempts to copy the data, even if the LCD controller is currently accessing
VRAM. So General Purpose DMA should be used only if the Display is disabled, or
during V-Blank, or (for rather short blocks) during H-Blank.
The execution of the program continues when the transfer has been completed, and FF55
then contains a value if FFh.

Bit7=1 - H-Blank DMA
The H-Blank DMA transfers 10h bytes of data during each H-Blank, ie. at LY=0-143, no
data is transferred during V-Blank (LY=144-153), but the transfer will then continue at
LY=00. The execution of the program is halted during the separate transfers, but the
program execution continues during the 'spaces' between each data block.
Note that the program may not change the Destination VRAM bank (FF4F), or the
Source ROM/RAM bank (in case data is transferred from bankable memory) until the
transfer has completed!
Reading from Register FF55 returns the remaining length (divided by 10h, minus 1), a
value of 0FFh indicates that the transfer has completed. It is also possible to terminate an
active H-Blank transfer by writing zero to Bit 7 of FF55. In that case reading from FF55
may return any value for the lower 7 bits, but Bit 7 will be read as "1".

Confirming if the DMA Transfer is Active
Reading Bit 7 of FF55 can be used to confirm if the DMA transfer is active (1=Not
Active, 0=Active). This works under any circumstances - after completion of General
Purpose, or H-Blank Transfer, and after manually terminating a H-Blank Transfer.

Transfer Timings
In both Normal Speed and Double Speed Mode it takes about 8us to transfer a block of
10h bytes. That are 8 cycles in Normal Speed Mode, and 16 'fast' cycles in Double Speed
Mode.
Older MBC controllers (like MBC1-4) and slower ROMs are not guaranteed to support
General Purpose or H-Blank DMA, that's because there are always 2 bytes transferred per
microsecond (even if the itself program runs it Normal Speed Mode).

 VRAM Tile Data

Tile Data is stored in VRAM at addresses 8000h-97FFh, this area defines the Bitmaps for
192 Tiles. In CGB Mode 384 Tiles can be defined, because memory at 0:8000h-97FFh
and at 1:8000h-97FFh is used.

Each tile is sized 8x8 pixels and has a color depth of 4 colors/gray shades. Tiles can be
displayed as part of the Background/Window map, and/or as OAM tiles (foreground
sprites). Note that foreground sprites may have only 3 colors, because color 0 is
transparent.

As it was said before, there are two Tile Pattern Tables at $8000-8FFF and at $8800-
97FF. The first one can be used for sprites and the background. Its tiles are numbered
from 0 to 255. The second table can be used for the background and the window display
and its tiles are numbered from -128 to 127.

Each Tile occupies 16 bytes, where each 2 bytes represent a line:
 Byte 0-1 First Line (Upper 8 pixels)
 Byte 2-3 Next Line
 etc.

For each line, the first byte defines the least significant bits of the color numbers for each
pixel, and the second byte defines the upper bits of the color numbers. In either case, Bit
7 is the leftmost pixel, and Bit 0 the rightmost.

So, each pixel is having a color number in range from 0-3. The color numbers are
translated into real colors (or gray shades) depending on the current palettes. The palettes
are defined through registers FF47-FF49 (Non CGB Mode), and FF68-FF6B (CGB
Mode).

 VRAM Background Maps

The gameboy contains two 32x32 tile background maps in VRAM at addresses 9800h-
9BFFh and 9C00h-9FFFh. Each can be used either to display "normal" background, or
"window" background.

BG Map Tile Numbers
An area of VRAM known as Background Tile Map contains the numbers of tiles to be
displayed. It is organized as 32 rows of 32 bytes each. Each byte contains a number of a
tile to be displayed. Tile patterns are taken from the Tile Data Table located either at
$8000-8FFF or $8800-97FF. In the first case, patterns are numbered with unsigned
numbers from 0 to 255 (i.e. pattern #0 lies at address $8000). In the second case, patterns
have signed numbers from -128 to 127 (i.e. pattern #0 lies at address $9000). The Tile
Data Table address for the background can be selected via LCDC register.

BG Map Attributes (CGB Mode only)
In CGB Mode, an additional map of 32x32 bytes is stored in VRAM Bank 1 (each byte
defines attributes for the corresponding tile-number map entry in VRAM Bank 0):
 Bit 0-2 Background Palette number (BGP0-7)
 Bit 3 Tile VRAM Bank number (0=Bank 0, 1=Bank 1)
 Bit 4 Not used
 Bit 5 Horizontal Flip (0=Normal, 1=Mirror horizontally)
 Bit 6 Vertical Flip (0=Normal, 1=Mirror vertically)
 Bit 7 BG-to-OAM Priority (0=Use OAM priority bit, 1=BG
Priority)

When Bit 7 is set, the corresponding BG tile will have priority above all OBJs (regardless
of the priority bits in OAM memory). There's also an Master Priority flag in LCDC

register Bit 0 which overrides all other priority bits when cleared.

As one background tile has a size of 8x8 pixels, the BG maps may hold a picture of
256x256 pixels, an area of 160x144 pixels of this picture can be displayed on the LCD
screen.

Normal Background (BG)
The SCY and SCX registers can be used to scroll the background, allowing to select the
origin of the visible 160x144 pixel area within the total 256x256 pixel background map.
Background wraps around the screen (i.e. when part of it goes off the screen, it appears
on the opposite side.)

The Window
Besides background, there is also a "window" overlaying the background. The window is
not scrollable i.e. it is always displayed starting from its left upper corner. The location of
a window on the screen can be adjusted via WX and WY registers. Screen coordinates of
the top left corner of a window are WX-7,WY. The tiles for the window are stored in the
Tile Data Table. Both the Background and the window share the same Tile Data Table.

Both background and window can be disabled or enabled separately via bits in the LCDC
register.

 VRAM Sprite Attribute Table (OAM)

GameBoy video controller can display up to 40 sprites either in 8x8 or in 8x16 pixels.
Because of a limitation of hardware, only ten sprites can be displayed per scan line.
Sprite patterns have the same format as BG tiles, but they are taken from the Sprite
Pattern Table located at $8000-8FFF and have unsigned numbering.

Sprite attributes reside in the Sprite Attribute Table (OAM - Object Attribute Memory) at
$FE00-FE9F. Each of the 40 entries consists of four bytes with the following meanings:

Byte0 - Y Position
Specifies the sprites vertical position on the screen (minus 16).
An offscreen value (for example, Y=0 or Y>=160) hides the sprite.

Byte1 - X Position
Specifies the sprites horizontal position on the screen (minus 8).
An offscreen value (X=0 or X>=168) hides the sprite, but the sprite
still affects the priority ordering - a better way to hide a sprite is to set its Y-coordinate
offscreen.

Byte2 - Tile/Pattern Number
Specifies the sprites Tile Number (00-FF). This (unsigned) value selects a tile from
memory at 8000h-8FFFh. In CGB Mode this could be either in VRAM Bank 0 or 1,

depending on Bit 3 of the following byte.
In 8x16 mode, the lower bit of the tile number is ignored. Ie. the upper 8x8 tile is "NN
AND FEh", and the lower 8x8 tile is "NN OR 01h".

Byte3 - Attributes/Flags:
 Bit7 OBJ-to-BG Priority (0=OBJ Above BG, 1=OBJ Behind BG color 1-3)
 (Used for both BG and Window. BG color 0 is always behind OBJ)
 Bit6 Y flip (0=Normal, 1=Vertically mirrored)
 Bit5 X flip (0=Normal, 1=Horizontally mirrored)
 Bit4 Palette number **Non CGB Mode Only** (0=OBP0, 1=OBP1)
 Bit3 Tile VRAM-Bank **CGB Mode Only** (0=Bank 0, 1=Bank 1)
 Bit2-0 Palette number **CGB Mode Only** (OBP0-7)

Sprite Priorities and Conflicts
When sprites with different x coordinate values overlap, the one with the smaller x
coordinate (closer to the left) will have priority and appear above any others. This applies
in Non CGB Mode only.
When sprites with the same x coordinate values overlap, they have priority according to
table ordering. (i.e. $FE00 - highest, $FE04 - next highest, etc.) In CGB Mode priorities
are always assigned like this.

Only 10 sprites can be displayed on any one line. When this limit is exceeded, the lower
priority sprites (priorities listed above) won't be displayed. To keep unused sprites from
affecting onscreen sprites set their Y coordinate to Y=0 or Y=>144+16. Just setting the X
coordinate to X=0 or X=>160+8 on a sprite will hide it but it will still affect other sprites
sharing the same lines.

Writing Data to OAM Memory
The recommened method is to write the data to normal RAM first, and to copy that RAM
to OAM by using the DMA transfer function, initiated through DMA register (FF46).
Beside for that, it is also possible to write data directly to the OAM area by using normal
LD commands, this works only during the H-Blank and V-Blank periods. The current
state of the LCD controller can be read out from the STAT register (FF41).

 Accessing VRAM and OAM

CAUTION
When the LCD Controller is drawing the screen it is directly reading from Video
Memory (VRAM) and from the Sprite Attribute Table (OAM). During these periods the
Gameboy CPU may not access the VRAM and OAM. That means, any attempts to write
to VRAM/OAM are ignored (the data remains unchanged). And any attempts to read
from VRAM/OAM will return undefined data (typically a value of FFh).

For this reason the program should verify if VRAM/OAM is accessable before actually
reading or writing to it. This is usually done by reading the Mode Bits from the STAT
Register (FF41). When doing this (as described in the examples below) you should take

care that no interrupts occur between the wait loops and the following memory access -
the memory is guaranted to be accessable only for a few cycles directly after the wait
loops have completed.

VRAM (memory at 8000h-9FFFh) is accessable during Mode 0-2
 Mode 0 - H-Blank Period,
 Mode 1 - V-Blank Period, and
 Mode 2 - Searching OAM Period

A typical procedure that waits for accessibility of VRAM would be:
 ld hl,0FF41h ;-STAT Register
 @@wait: ;\
 bit 1,(hl) ; Wait until Mode is 0 or 1
 jr nz,@@wait ;/

Even if the procedure gets executed at the <end> of Mode 0 or 1, it is still proof to
assume that VRAM can be accessed for a few more cycles because in either case the
following period is Mode 2 which allows access to VRAM either.
In CGB Mode an alternate method to write data to VRAM is to use the HDMA Function
(FF51-FF55).

OAM (memory at FE00h-FE9Fh) is accessable during Mode 0-1
 Mode 0 - H-Blank Period, and
 Mode 1 - V-Blank Period

Beside for that, OAM can be accessed at any time by using the DMA Function (FF46).
When directly reading or writing to OAM, a typical procedure that waits for accessibilty
or OAM Memory would be:
 ld hl,0FF41h ;-STAT Register
 @@wait1: ;\
 bit 1,(hl) ; Wait until Mode is -NOT- 0 or 1
 jr z,@@wait1 ;/
 @@wait2: ;\
 bit 1,(hl) ; Wait until Mode 0 or 1 -BEGINS-
 jr nz,@@wait2 ;/

The two wait loops ensure that Mode 0 or 1 will last for a few clock cycles after
completion of the procedure. In V-Blank period it might be recommended to skip the
whole procedure - and in most cases using the above mentioned DMA function would be
more recommended anyways.

Note
When the display is disabled, both VRAM and OAM are accessable at any time. The
downside is that the screen is blank (white) during this period, so that disabling the
display would be recommended only during initialization.

 Sound Controller

Sound Overview
Sound Channel 1 - Tone & Sweep

Sound Channel 2 - Tone
Sound Channel 3 - Wave Output
Sound Channel 4 - Noise
Sound Control Registers

 Sound Overview

There are two sound channels connected to the output terminals SO1 and SO2. There is
also a input terminal Vin connected to the cartridge. It can be routed to either of both
output terminals. GameBoy circuitry allows producing sound in four different ways:

 Quadrangular wave patterns with sweep and envelope functions.
 Quadrangular wave patterns with envelope functions.
 Voluntary wave patterns from wave RAM.
 White noise with an envelope function.

These four sounds can be controlled independantly and then mixed separately for each of
the output terminals.

Sound registers may be set at all times while producing sound.

(Sounds will have a 2.4% higher frequency on Super GB.)

 Sound Channel 1 - Tone & Sweep

FF10 - NR10 - Channel 1 Sweep register (R/W)
 Bit 6-4 - Sweep Time
 Bit 3 - Sweep Increase/Decrease
 0: Addition (frequency increases)
 1: Subtraction (frequency decreases)
 Bit 2-0 - Number of sweep shift (n: 0-7)

Sweep Time:
 000: sweep off - no freq change
 001: 7.8 ms (1/128Hz)
 010: 15.6 ms (2/128Hz)
 011: 23.4 ms (3/128Hz)
 100: 31.3 ms (4/128Hz)
 101: 39.1 ms (5/128Hz)
 110: 46.9 ms (6/128Hz)
 111: 54.7 ms (7/128Hz)

The change of frequency (NR13,NR14) at each shift is calculated by the following
formula where X(0) is initial freq & X(t-1) is last freq:
 X(t) = X(t-1) +/- X(t-1)/2^n

FF11 - NR11 - Channel 1 Sound length/Wave pattern duty (R/W)
 Bit 7-6 - Wave Pattern Duty (Read/Write)
 Bit 5-0 - Sound length data (Write Only) (t1: 0-63)

Wave Duty:
 00: 12.5% (_-------_-------_-------)
 01: 25% (__------__------__------)
 10: 50% (____----____----____----) (normal)
 11: 75% (______--______--______--)

Sound Length = (64-t1)*(1/256) seconds
The Length value is used only if Bit 6 in NR14 is set.

FF12 - NR12 - Channel 1 Volume Envelope (R/W)
 Bit 7-4 - Initial Volume of envelope (0-0Fh) (0=No Sound)
 Bit 3 - Envelope Direction (0=Decrease, 1=Increase)
 Bit 2-0 - Number of envelope sweep (n: 0-7)
 (If zero, stop envelope operation.)

Length of 1 step = n*(1/64) seconds

FF13 - NR13 - Channel 1 Frequency lo (Write Only)

Lower 8 bits of 11 bit frequency (x).
Next 3 bit are in NR14 ($FF14)

FF14 - NR14 - Channel 1 Frequency hi (R/W)
 Bit 7 - Initial (1=Restart Sound) (Write Only)
 Bit 6 - Counter/consecutive selection (Read/Write)
 (1=Stop output when length in NR11 expires)
 Bit 2-0 - Frequency's higher 3 bits (x) (Write Only)

Frequency = 131072/(2048-x) Hz

 Sound Channel 2 - Tone

This sound channel works exactly as channel 1, except that it doesn't have a Tone
Envelope/Sweep Register.

FF16 - NR21 - Channel 2 Sound Length/Wave Pattern Duty (R/W)
 Bit 7-6 - Wave Pattern Duty (Read/Write)
 Bit 5-0 - Sound length data (Write Only) (t1: 0-63)

Wave Duty:
 00: 12.5% (_-------_-------_-------)
 01: 25% (__------__------__------)
 10: 50% (____----____----____----) (normal)
 11: 75% (______--______--______--)

Sound Length = (64-t1)*(1/256) seconds
The Length value is used only if Bit 6 in NR24 is set.

FF17 - NR22 - Channel 2 Volume Envelope (R/W)
 Bit 7-4 - Initial Volume of envelope (0-0Fh) (0=No Sound)
 Bit 3 - Envelope Direction (0=Decrease, 1=Increase)
 Bit 2-0 - Number of envelope sweep (n: 0-7)
 (If zero, stop envelope operation.)

Length of 1 step = n*(1/64) seconds

FF18 - NR23 - Channel 2 Frequency lo data (W)
Frequency's lower 8 bits of 11 bit data (x).
Next 3 bits are in NR24 ($FF19).

FF19 - NR24 - Channel 2 Frequency hi data (R/W)
 Bit 7 - Initial (1=Restart Sound) (Write Only)
 Bit 6 - Counter/consecutive selection (Read/Write)
 (1=Stop output when length in NR21 expires)
 Bit 2-0 - Frequency's higher 3 bits (x) (Write Only)

Frequency = 131072/(2048-x) Hz

 Sound Channel 3 - Wave Output

This channel can be used to output digital sound, the length of the sample buffer (Wave
RAM) is limited to 32 digits. This sound channel can be also used to output normal tones
when initializing the Wave RAM by a square wave. This channel doesn't have a volume
envelope register.

FF1A - NR30 - Channel 3 Sound on/off (R/W)
 Bit 7 - Sound Channel 3 Off (0=Stop, 1=Playback) (Read/Write)

FF1B - NR31 - Channel 3 Sound Length
 Bit 7-0 - Sound length (t1: 0 - 255)

Sound Length = (256-t1)*(1/256) seconds
This value is used only if Bit 6 in NR34 is set.

FF1C - NR32 - Channel 3 Select output level (R/W)
 Bit 6-5 - Select output level (Read/Write)

Possible Output levels are:
 0: Mute (No sound)
 1: 100% Volume (Produce Wave Pattern RAM Data as it is)
 2: 50% Volume (Produce Wave Pattern RAM data shifted once to the
right)
 3: 25% Volume (Produce Wave Pattern RAM data shifted twice to the
right)

FF1D - NR33 - Channel 3 Frequency's lower data (W)
Lower 8 bits of an 11 bit frequency (x).

FF1E - NR34 - Channel 3 Frequency's higher data (R/W)
 Bit 7 - Initial (1=Restart Sound) (Write Only)
 Bit 6 - Counter/consecutive selection (Read/Write)
 (1=Stop output when length in NR31 expires)
 Bit 2-0 - Frequency's higher 3 bits (x) (Write Only)

Frequency = 4194304/(64*(2048-x)) Hz = 65536/(2048-x) Hz

FF30-FF3F - Wave Pattern RAM
Contents - Waveform storage for arbitrary sound data

This storage area holds 32 4-bit samples that are played back upper 4 bits first.

 Sound Channel 4 - Noise

This channel is used to output white noise. This is done by randomly switching the
amplitude between high and low at a given frequency. Depending on the frequency the
noise will appear 'harder' or 'softer'.

It is also possible to influence the function of the random generator, so the that the output
becomes more regular, resulting in a limited ability to output Tone instead of Noise.

FF20 - NR41 - Channel 4 Sound Length (R/W)
 Bit 5-0 - Sound length data (t1: 0-63)

Sound Length = (64-t1)*(1/256) seconds
The Length value is used only if Bit 6 in NR44 is set.

FF21 - NR42 - Channel 4 Volume Envelope (R/W)
 Bit 7-4 - Initial Volume of envelope (0-0Fh) (0=No Sound)
 Bit 3 - Envelope Direction (0=Decrease, 1=Increase)
 Bit 2-0 - Number of envelope sweep (n: 0-7)
 (If zero, stop envelope operation.)

Length of 1 step = n*(1/64) seconds

FF22 - NR43 - Channel 4 Polynomial Counter (R/W)
The amplitude is randomly switched between high and low at the given frequency. A
higher frequency will make the noise to appear 'softer'.
When Bit 3 is set, the output will become more regular, and some frequencies will sound
more like Tone than Noise.
 Bit 7-4 - Shift Clock Frequency (s)
 Bit 3 - Counter Step/Width (0=15 bits, 1=7 bits)
 Bit 2-0 - Dividing Ratio of Frequencies (r)

Frequency = 524288 Hz / r / 2^(s+1) ;For r=0 assume r=0.5 instead

FF23 - NR44 - Channel 4 Counter/consecutive; Inital (R/W)

 Bit 7 - Initial (1=Restart Sound) (Write Only)
 Bit 6 - Counter/consecutive selection (Read/Write)
 (1=Stop output when length in NR41 expires)

 Sound Control Registers

FF24 - NR50 - Channel control / ON-OFF / Volume (R/W)
The volume bits specify the "Master Volume" for Left/Right sound output.
 Bit 7 - Output Vin to SO2 terminal (1=Enable)
 Bit 6-4 - SO2 output level (volume) (0-7)
 Bit 3 - Output Vin to SO1 terminal (1=Enable)
 Bit 2-0 - SO1 output level (volume) (0-7)

The Vin signal is received from the game cartridge bus, allowing external hardware in the
cartridge to supply a fifth sound channel, additionally to the gameboys internal four
channels. As far as I know this feature isn't used by any existing games.

FF25 - NR51 - Selection of Sound output terminal (R/W)
 Bit 7 - Output sound 4 to SO2 terminal
 Bit 6 - Output sound 3 to SO2 terminal
 Bit 5 - Output sound 2 to SO2 terminal
 Bit 4 - Output sound 1 to SO2 terminal
 Bit 3 - Output sound 4 to SO1 terminal
 Bit 2 - Output sound 3 to SO1 terminal
 Bit 1 - Output sound 2 to SO1 terminal
 Bit 0 - Output sound 1 to SO1 terminal

FF26 - NR52 - Sound on/off
If your GB programs don't use sound then write 00h to this register to save 16% or more
on GB power consumption. Disabeling the sound controller by clearing Bit 7 destroys the
contents of all sound registers. Also, it is not possible to access any sound registers
(execpt FF26) while the sound controller is disabled.
 Bit 7 - All sound on/off (0: stop all sound circuits) (Read/Write)
 Bit 3 - Sound 4 ON flag (Read Only)
 Bit 2 - Sound 3 ON flag (Read Only)
 Bit 1 - Sound 2 ON flag (Read Only)
 Bit 0 - Sound 1 ON flag (Read Only)

Bits 0-3 of this register are read only status bits, writing to these bits does NOT
enable/disable sound. The flags get set when sound output is restarted by setting the
Initial flag (Bit 7 in NR14-NR44), the flag remains set until the sound length has expired
(if enabled). A volume envelopes which has decreased to zero volume will NOT cause
the sound flag to go off.

 Joypad Input

FF00 - P1/JOYP - Joypad (R/W)

The eight gameboy buttons/direction keys are arranged in form of a 2x4 matrix. Select
either button or direction keys by writing to this register, then read-out bit 0-3.
 Bit 7 - Not used
 Bit 6 - Not used
 Bit 5 - P15 Select Button Keys (0=Select)
 Bit 4 - P14 Select Direction Keys (0=Select)
 Bit 3 - P13 Input Down or Start (0=Pressed) (Read Only)
 Bit 2 - P12 Input Up or Select (0=Pressed) (Read Only)
 Bit 1 - P11 Input Left or Button B (0=Pressed) (Read Only)
 Bit 0 - P10 Input Right or Button A (0=Pressed) (Read Only)

Note: Most programs are repeatedly reading from this port several times (the first reads
used as short delay, allowing the inputs to stabilize, and only the value from the last read
actually used).

Usage in SGB software
Beside for normal joypad input, SGB games mis-use the joypad register to output SGB
command packets to the SNES, also, SGB programs may read out gamepad states from
up to four different joypads which can be connected to the SNES.
See SGB description for details.

INT 60 - Joypad Interrupt
Joypad interrupt is requested when any of the above Input lines changes from High to
Low. Generally this should happen when a key becomes pressed (provided that the
button/direction key is enabled by above Bit4/5), however, because of switch bounce, one
or more High to Low transitions are usually produced both when pressing or releasing a
key.

Using the Joypad Interrupt
It's more or less useless for programmers, even when selecting both buttons and direction
keys simultaneously it still cannot recognize all keystrokes, because in that case a bit
might be already held low by a button key, and pressing the corresponding direction key
would thus cause no difference. The only meaningful purpose of the keystroke interrupt
would be to terminate STOP (low power) standby state.
Also, the joypad interrupt does not appear to work with CGB and GBA hardware (the
STOP function can be still terminated by joypad keystrokes though).

 Serial Data Transfer (Link Cable)

FF01 - SB - Serial transfer data (R/W)
8 Bits of data to be read/written

FF02 - SC - Serial Transfer Control (R/W)
 Bit 7 - Transfer Start Flag (0=No Transfer, 1=Start)
 Bit 1 - Clock Speed (0=Normal, 1=Fast) ** CGB Mode Only **
 Bit 0 - Shift Clock (0=External Clock, 1=Internal Clock)

The clock signal specifies the rate at which the eight data bits in SB (FF01) are
transferred. When the gameboy is communicating with another gameboy (or other
computer) then either one must supply internal clock, and the other one must use external
clock.

Internal Clock
In Non-CGB Mode the gameboy supplies an internal clock of 8192Hz only (allowing to
transfer about 1 KByte per second). In CGB Mode four internal clock rates are available,
depending on Bit 1 of the SC register, and on whether the CGB Double Speed Mode is
used:
 8192Hz - 1KB/s - Bit 1 cleared, Normal
 16384Hz - 2KB/s - Bit 1 cleared, Double Speed Mode
 262144Hz - 32KB/s - Bit 1 set, Normal
 524288Hz - 64KB/s - Bit 1 set, Double Speed Mode

External Clock
The external clock is typically supplied by another gameboy, but might be supplied by
another computer (for example if connected to a PCs parallel port), in that case the
external clock may have any speed. Even the old/monochrome gameboy is reported to
recognizes external clocks of up to 500KHz. And there is no limitiation into the other
direction - even when suppling an external clock speed of "1 bit per month", then the
gameboy will still eagerly wait for the next bit(s) to be transferred. It isn't required that
the clock pulses are sent at an regular interval either.

Timeouts
When using external clock then the transfer will not complete until the last bit is received.
In case that the second gameboy isn't supplying a clock signal, if it gets turned off, or if
there is no second gameboy connected at all) then transfer will never complete. For this
reason the transfer procedure should use a timeout counter, and abort the communication
if no response has been received during the timeout interval.

Delays and Synchronization
The gameboy that is using internal clock should always execute a small delay between
each transfer, in order to ensure that the opponent gameboy has enough time to prepare
itself for the next transfer, ie. the gameboy with external clock must have set its transfer
start bit before the gameboy with internal clock starts the transfer. Alternately, the two
gameboys could switch between internal and external clock for each transferred byte to
ensure synchronization.

Transfer is initiated by setting the Transfer Start Flag. This bit is automatically set to 0 at
the end of Transfer. Reading this bit can be used to determine if the transfer is still active.

INT 58 - Serial Interrupt
When the transfer has completed (ie. after sending/receiving 8 bits, if any) then an
interrupt is requested by setting Bit 3 of the IF Register (FF0F). When that interrupt is
enabled, then the Serial Interrupt vector at 0058 is called.

XXXXXX...

Transmitting and receiving serial data is done simultaneously. The received data is
automatically stored in SB.

The serial I/O port on the Gameboy is a very simple setup and is crude compared to
standard RS-232 (IBM-PC) or RS-485 (Macintosh) serial ports. There are no start or stop
bits.

During a transfer, a byte is shifted in at the same time that a byte is shifted out. The rate
of the shift is determined by whether the clock source is internal or external.
The most significant bit is shifted in and out first.

When the internal clock is selected, it drives the clock pin on the game link port and it
stays high when not used. During a transfer it will go low eight times to clock in/out each
bit.

The state of the last bit shifted out determines the state of the output line until another
transfer takes place.

If a serial transfer with internal clock is performed and no external GameBoy is present, a
value of $FF will be received in the transfer.

The following code causes $75 to be shifted out the serial port and a byte to be shifted
into $FF01:

 ld a,$75
 ld ($FF01),a
 ld a,$81
 ld ($FF02),a

 Timer and Divider Registers

FF04 - DIV - Divider Register (R/W)
This register is incremented at rate of 16384Hz (~16779Hz on SGB). In CGB Double
Speed Mode it is incremented twice as fast, ie. at 32768Hz. Writing any value to this
register resets it to 00h.

FF05 - TIMA - Timer counter (R/W)
This timer is incremented by a clock frequency specified by the TAC register ($FF07).
When the value overflows (gets bigger than FFh) then it will be reset to the value
specified in TMA (FF06), and an interrupt will be requested, as described below.

FF06 - TMA - Timer Modulo (R/W)
When the TIMA overflows, this data will be loaded.

FF07 - TAC - Timer Control (R/W)
 Bit 2 - Timer Stop (0=Stop, 1=Start)
 Bits 1-0 - Input Clock Select
 00: 4096 Hz (~4194 Hz SGB)
 01: 262144 Hz (~268400 Hz SGB)
 10: 65536 Hz (~67110 Hz SGB)
 11: 16384 Hz (~16780 Hz SGB)

INT 50 - Timer Interrupt
Each time when the timer overflows (ie. when TIMA gets bigger than FFh), then an
interrupt is requested by setting Bit 2 in the IF Register (FF0F). When that interrupt is
enabled, then the CPU will execute it by calling the timer interrupt vector at 0050h.

Note
The above described Timer is the built-in timer in the gameboy. It has nothing to do with
the MBC3s battery buffered Real Time Clock - that's a completely different thing,
described in the chapter about Memory Banking Controllers.

 Interrupts

IME - Interrupt Master Enable Flag (Write Only)
 0 - Disable all Interrupts
 1 - Enable all Interrupts that are enabled in IE Register (FFFF)

The IME flag is used to disable all interrupts, overriding any enabled bits in the IE
Register. It isn't possible to access the IME flag by using a I/O address, instead IME is
accessed directly from the CPU, by the following opcodes/operations:
 EI ;Enable Interrupts (ie. IME=1)
 DI ;Disable Interrupts (ie. IME=0)
 RETI ;Enable Ints & Return (same as the opcode combination EI, RET)
 <INT> ;Disable Ints & Call to Interrupt Vector

Whereas <INT> means the operation which is automatically executed by the CPU when
it executes an interrupt.

FFFF - IE - Interrupt Enable (R/W)
 Bit 0: V-Blank Interrupt Enable (INT 40h) (1=Enable)
 Bit 1: LCD STAT Interrupt Enable (INT 48h) (1=Enable)
 Bit 2: Timer Interrupt Enable (INT 50h) (1=Enable)
 Bit 3: Serial Interrupt Enable (INT 58h) (1=Enable)
 Bit 4: Joypad Interrupt Enable (INT 60h) (1=Enable)

FF0F - IF - Interrupt Flag (R/W)
 Bit 0: V-Blank Interrupt Request (INT 40h) (1=Request)
 Bit 1: LCD STAT Interrupt Request (INT 48h) (1=Request)
 Bit 2: Timer Interrupt Request (INT 50h) (1=Request)
 Bit 3: Serial Interrupt Request (INT 58h) (1=Request)
 Bit 4: Joypad Interrupt Request (INT 60h) (1=Request)

When an interrupt signal changes from low to high, then the corresponding bit in the IF
register becomes set. For example, Bit 0 becomes set when the LCD controller enters into
the V-Blank period.

Interrupt Requests
Any set bits in the IF register are only <requesting> an interrupt to be executed. The
actual <execution> happens only if both the IME flag, and the corresponding bit in the IE
register are set, otherwise the interrupt 'waits' until both IME and IE allow its execution.

Interrupt Execution
When an interrupt gets executed, the corresponding bit in the IF register becomes
automatically reset by the CPU, and the IME flag becomes cleared (disabeling any
further interrupts until the program re-enables the interrupts, typically by using the RETI
instruction), and the corresponding Interrupt Vector (that are the addresses in range
0040h-0060h, as shown in IE and IF register decriptions above) becomes called.

Manually Requesting/Discarding Interrupts
As the CPU automatically sets and cleares the bits in the IF register it is usually not
required to write to the IF register. However, the user may still do that in order to
manually request (or discard) interrupts. As for real interrupts, a manually requested
interrupt isn't executed unless/until IME and IE allow its execution.

Interrupt Priorities
In the following three situations it might happen that more than 1 bit in the IF register are
set, requesting more than one interrupt at once:
 1) More than one interrupt signal changed from Low
 to High at the same time.
 2) Several interrupts have been requested during a
 time in which IME/IE didn't allow these interrupts
 to be executed directly.
 3) The user has written a value with several "1" bits
 (for example 1Fh) to the IF register.

Provided that IME and IE allow the execution of more than one of the requested
interrupts, then the interrupt with the highest priority becomes executed first. The
priorities are ordered as the bits in the IE and IF registers, Bit 0 (V-Blank) having the
highest priority, and Bit 4 (Joypad) having the lowest priority.

Nested Interrupts
The CPU automatically disables all other interrupts by setting IME=0 when it executes an
interrupt. Usually IME remains zero until the interrupt procedure returns (and sets IME=1
by the RETI instruction). However, if you want any other interrupts of lower or higher
(or same) priority to be allowed to be executed from inside of the interrupt procedure,
then you can place an EI instruction into the interrupt procedure.

 CGB Registers

Forward
This chapter describes only CGB (Color Gameboy) registers that didn't fit into normal
categories - most CGB registers are described in the chapter about Video Display (Color
Palettes, VRAM Bank, VRAM DMA Transfers, and changed meaning of Bit 0 of LCDC
Control register). Also, a changed bit is noted in the chapter about the Serial/Link port.

Unlocking CGB functions
When using any CGB registers (including those in the Video/Link chapters), you must
first unlock CGB features by changing byte 0143h in the cartridge header. Typically use
a value of 80h for games which support both CGB and monochrome gameboys, and C0h
for games which work on CGBs only. Otherwise, the CGB will operate in monochrome
"Non CGB" compatibility mode.

Detecting CGB (and GBA) functions
CGB hardware can be detected by examing the CPU accumulator (A-register) directly
after startup. A value of 11h indicates CGB (or GBA) hardware, if so, CGB functions can
be used (if unlocked, see above).
When A=11h, you may also examine Bit 0 of the CPUs B-Register to separate between
CGB (bit cleared) and GBA (bit set), by that detection it is possible to use 'repaired' color
palette data matching for GBA displays.

FF4D - KEY1 - CGB Mode Only - Prepare Speed Switch
 Bit 7: Current Speed (0=Normal, 1=Double) (Read Only)
 Bit 0: Prepare Speed Switch (0=No, 1=Prepare) (Read/Write)

This register is used to prepare the gameboy to switch between CGB Double Speed Mode
and Normal Speed Mode. The actual speed switch is performed by executing a STOP
command after Bit 0 has been set. After that Bit 0 will be cleared automatically, and the
gameboy will operate at the 'other' speed. The recommended speed switching procedure
in pseudo code would be:
 IF KEY1_BIT7 <> DESIRED_SPEED THEN
 IE=00H ;(FFFF)=00h
 JOYP=30H ;(FF00)=30h
 KEY1=01H ;(FF4D)=01h
 STOP ;STOP
 ENDIF

The CGB is operating in Normal Speed Mode when it is turned on. Note that using the
Double Speed Mode increases the power consumption, it would be recommended to use
Single Speed whenever possible. However, the display will flicker (white) for a moment
during speed switches, so this cannot be done permanentely.
In Double Speed Mode the following will operate twice as fast as normal:
 The CPU (2.10 MHz, 1 Cycle = approx. 0.5us)
 Timer and Divider Registers
 Serial Port (Link Cable)
 DMA Transfer to OAM

And the following will keep operating as usual:
 LCD Video Controller
 HDMA Transfer to VRAM

 All Sound Timings and Frequencies

FF56 - RP - CGB Mode Only - Infrared Communications Port
This register allows to input and output data through the CGBs built-in Infrared Port.
When reading data, bit 6 and 7 must be set (and obviously Bit 0 must be cleared - if you
don't want to receive your own gameboys IR signal). After sending or receiving data you
should reset the register to 00h to reduce battery power consumption again.
 Bit 0: Write Data (0=LED Off, 1=LED On) (Read/Write)
 Bit 1: Read Data (0=Receiving IR Signal, 1=Normal) (Read Only)
 Bit 6-7: Data Read Enable (0=Disable, 3=Enable) (Read/Write)

Note that the receiver will adapt itself to the normal level of IR pollution in the air, so if
you would send a LED ON signal for a longer period, then the receiver would treat that
as normal (=OFF) after a while. For example, a Philips TV Remote Control sends a series
of 32 LED ON/OFF pulses (length 10us ON, 17.5us OFF each) instead of a permanent
880us LED ON signal.
Even though being generally CGB compatible, the GBA does not include an infra-red
port.

FF70 - SVBK - CGB Mode Only - WRAM Bank
In CGB Mode 32 KBytes internal RAM are available. This memory is divided into 8
banks of 4 KBytes each. Bank 0 is always available in memory at C000-CFFF, Bank 1-7
can be selected into the address space at D000-DFFF.
 Bit 0-2 Select WRAM Bank (Read/Write)

Writing a value of 01h-07h will select Bank 1-7, writing a value of 00h will select Bank 1
either.

FF6C - Undocumented (FEh) - Bit 0 (Read/Write) - CGB Mode Only
FF72 - Undocumented (00h) - Bit 0-7 (Read/Write)
FF73 - Undocumented (00h) - Bit 0-7 (Read/Write)
FF74 - Undocumented (00h) - Bit 0-7 (Read/Write) - CGB Mode Only
FF75 - Undocumented (8Fh) - Bit 4-6 (Read/Write)
FF76 - Undocumented (00h) - Always 00h (Read Only)
FF77 - Undocumented (00h) - Always 00h (Read Only)
These are undocumented CGB Registers. The numbers in brackets () indicate the initial
values. Purpose of these registers is unknown (if any). Registers FF6C and FF74 are
always FFh if the CGB is in Non CGB Mode.

 SGB Functions

General Information
SGB Description
SGB Unlocking and Detecting SGB Functions
SGB Command Packet Transfers
SGB VRAM Transfers
SGB Command Summary

SGB Color Palettes Overview

SGB Commands
SGB Palette Commands
SGB Color Attribute Commands
SGB Sound Functions
SGB System Control Commands
SGB Multiplayer Command
SGB Border and OBJ Commands

 SGB Description

General Description
Basically, the SGB (Super Gameboy) is an adapter cartridge that allows to play gameboy
games on a SNES (Super Nintendo Entertainment System) gaming console. In detail, you
plug the gameboy cartridge into the SGB cartridge, then plug the SGB cartridge into the
SNES, and then connect the SNES to your TV Set. In result, games can be played and
viewed on the TV Set, and are controlled by using the SNES joypad(s).

More Technical Description
The SGB cartridge just contains a normal gameboy CPU and normal gameboy video
controller. Normally the video signal from this controller would be sent to the LCD
screen, however, in this special case the SNES read out the video signal and displays it on
the TV set by using a special SNES BIOS ROM which is located in the SGB cartridge.
Also, normal gameboy sound output is forwared to the SNES and output to the TV Set,
vice versa, joypad input is forwared from the SNES controller(s) to the gameboy joypad
inputs.

Normal Monochrome Games
Any gameboy games which have been designed for normal monochrome handheld
gameboys will work with the SGB hardware as well. The SGB will apply a four color
palette to these games by replacing the normal four grayshades. The 160x144 pixel
gamescreen is displayed in the middle of the 256x224 pixel SNES screen (the unused
area is filled by a screen border bitmap). The user may access built-in menues, allowing
to change color palette data, to select between several pre-defined borders, etc.

Games that have been designed to support SGB functions may also access the following
additional features:

Colorized Game Screen
There's limited ability to colorize the gamescreen by assigning custom color palettes to
each 20x18 display characters, however, this works mainly for static display data such
like title screens or status bars, the 20x18 color attribute map is non-scrollable, and it is
not possible to assign separate colors to moveable foreground sprites (OBJs), so that
animated screen regions will be typically restricted to using a single palette of four colors

only.

SNES Foreground Sprites
Up to 24 foreground sprites (OBJs) of 8x8 or 16x16 pixels, 16 colors can be displayed.
When replacing (or just overlaying) the normal gameboy OBJs by SNES OBJs it'd be
thus possible to display OBJs with other colors than normal background area. This
method doesn't appear to be very popular, even though it appears to be quite easy to
implement, however, the bottommost character line of the gamescreen will be masked out
because this area is used to transfer OAM data to the SNES.

The SGB Border
The possibly most popular and most impressive feature is to replace the default SGB
screen border by a custom bitmap which is stored in the game cartridge.

Multiple Joypads
Up to four joypads can be conected to the SNES, and SGB software may read-out each of
these joypads separately, allowing up to four players to play the same game
simultaneously. Unlike for multiplayer handheld games, this requires only one game
cartridge and only one SGB/SNES, and no link cables are required, the downside is that
all players must share the same display screen.

Sound Functions
Beside for normal gameboy sound, a number of digital sound effects is pre-defined in the
SNES BIOS, these effects may be accessed quite easily. Programmers whom are familiar
with SNES sounds may also access the SNES sound chip, or use the SNES MIDI engine
directly in order to produce other sound effects or music.

Taking Control of the SNES CPU
Finally, it is possible to write program code or data into SNES memory, and to execute
such program code by using the SNES CPU.

SGB System Clock
Because the SGB is synchronized to the SNES CPU, the gameboy system clock is
directly chained to the SNES system clock. In result, the gameboy CPU, video controller,
timers, and sound frequencies will be all operated approx 2.4% faster as by normal
gameboys.
Basically, this should be no problem, and the game will just run a little bit faster.
However sensitive musicians may notice that sound frequencies are a bit too high,
programs that support SGB functions may avoid this effect by reducing frequencies of
gameboy sounds when having detected SGB hardware.
Also, I think that I've heard that SNES models which use a 50Hz display refresh rate
(rather than 60Hz) are resulting in respectively slower SGB/gameboy timings ???

 SGB Unlocking and Detecting SGB Functions

Cartridge Header
SGB games are required to have a cartridge header with Nintendo and proper checksum
just as normal gameboy games. Also, two special entries must be set in order to unlock
SGB functions:
 146h - SGB Flag - Must be set to 03h for SGB games
 14Bh - Old Licensee Code - Must be set 33h for SGB games

When these entries aren't set, the game will still work just like all 'monochrome' gameboy
games, but it cannot access any of the special SGB functions.

Detecting SGB hardware
The recommended detection method is to send a MLT_REQ command which enables
two (or four) joypads. A normal handheld gameboy will ignore this command, a SGB
will now return incrementing joypad IDs each time when deselecting keyboard lines (see
MLT_REQ description for details).
Now read-out joypad state/IDs several times, and if the ID-numbers are changing, then it
is a SGB (a normal gameboy would typically always return 0Fh as ID). Finally, when not
intending to use more than one joypad, send another MLT_REQ command in order to re-
disable the multi-controller mode.
Detection works regardless of whether and how many joypads are physically connected
to the SNES. However, detection works only when having unlocked SGB functions in the
cartridge header, as described above.

Separating between SGB and SGB2
It is also possible to separate between SGB and SGB2 models by examining the inital
value of the accumulator (A-register) directly after startup.
 01h SGB or Normal Gameboy (DMG)
 FFh SGB2 or Pocket Gameboy
 11h CGB or GBA

Because values 01h and FFh are shared for both handhelds and SGBs, it is still required
to use the above MLT_REQ detection procedure. As far as I know the SGB2 doesn't have
any extra features which'd require separate SGB2 detection except for curiosity purposes,
for example, the game "Tetris DX" chooses to display an alternate SGB border on
SGB2s.

Reportedly, some SGB models include link ports (just like handheld gameboy) (my own
SGB does not have such an port), possibly this feature is available in SGB2-type models
only ???

 SGB Command Packet Transfers

Command packets (aka Register Files) are transferred from the gameboy to the SNES by
using P14 and P15 output lines of the JOYPAD register (FF00h), these lines are normally
used to select the two rows in the gameboy keyboard matrix (which still works).

Transferring Bits
A command packet transfer must be initiated by setting both P14 and P15 to LOW, this
will reset and start the SNES packet receiving program. Data is then transferred (LSB
first), setting P14=LOW will indicate a "0" bit, and setting P15=LOW will indicate a "1"
bit. For example:
 RESET 0 0 1 1 0 1 0
 P14 --_---_---_-----------_-------_--...
 P15 --_-----------_---_-------_------...

Data and reset pulses must be kept LOW for at least 5us. P14 and P15 must be kept both
HIGH for at least 15us between any pulses.
Obviously, it'd be no good idea to access the JOYPAD register during the transfer, for
example, in case that your VBlank interrupt procedure reads-out joypad states each
frame, be sure to disable that interrupt during the transfer (or disable only the joypad
procedure by using a software flag).

Transferring Packets
Each packet is invoked by a RESET pulse, then 128 bits of data are transferred (16 bytes,
LSB of first byte first), and finally, a "0"-bit must be transferred as stop bit. The structure
of normal packets is:
 1 PULSE Reset
 1 BYTE Command Code*8+Length
 15 BYTES Parameter Data
 1 BIT Stop Bit (0)

The above 'Length' indicates the total number of packets (1-7, including the first packet)
which will be sent, ie. if more than 15 parameter bytes are used, then further packet(s)
will follow, as such:
 1 PULSE Reset
 16 BYTES Parameter Data
 1 BIT Stop Bit (0)

By using all 7 packets, up to 111 data bytes (15+16*6) may be sent.
Unused bytes at the end of the last packet must be set to zero.
A 60ms (4 frames) delay should be invoked between each packet transfer.

 SGB VRAM Transfers

Overview
Beside for the packet transfer method, larger data blocks of 4KBytes can be transferred
by using the video signal. These transfers are invoked by first sending one of the
commands with the ending _TRN (by using normal packet transfer), the 4K data block is
then read-out by the SNES from gameboy display memory during the next frame.

Transfer Data
Normally, transfer data should be stored at 8000h-8FFFh in gameboy VRAM,
even though the SNES receives the data in from display scanlines, it will automatically
re-produce the same ordering of bits and bytes, as being originally stored at 8000h-8FFFh
in gameboy memory.

Preparing the Display
The above method works only when recursing the following things: BG Map must
display unsigned characters 00h-FFh on the screen; 00h..13h in first line, 14h..27h in next
line, etc. The gameboy display must be enabled, the display may not be scrolled, OBJ
sprites should not overlap the background tiles, the BGP palette register must be set to
E4h.

Transfer Time
Note that the transfer data should be prepared in VRAM <before> sending the transfer
command packet. The actual transfer starts at the beginning of the next frame after the
command has been sent, and the transfer ends at the end of the 5th frame after the
command has been sent (not counting the frame in which the command has been sent).

Avoiding Screen Garbage
The display will contain 'garbage' during the transfer, this dirt-effect can be avoided by
freezing the screen (in the state which has been displayed before the transfer) by using
the MASK_EN command.
Of course, this works only when actually executing the game on a SGB (and not on
normal handheld gameboys), it'd be thus required to detect the presence of SGB hardware
before blindly sending VRAM data.

 SGB Command Summary

SGB System Command Table
 Code Name Expl.
 00 PAL01 Set SGB Palette 0,1 Data
 01 PAL23 Set SGB Palette 2,3 Data
 02 PAL03 Set SGB Palette 0,3 Data
 03 PAL12 Set SGB Palette 1,2 Data
 04 ATTR_BLK "Block" Area Designation Mode
 05 ATTR_LIN "Line" Area Designation Mode
 06 ATTR_DIV "Divide" Area Designation Mode
 07 ATTR_CHR "1CHR" Area Designation Mode
 08 SOUND Sound On/Off
 09 SOU_TRN Transfer Sound PRG/DATA
 0A PAL_SET Set SGB Palette Indirect
 0B PAL_TRN Set System Color Palette Data
 0C ATRC_EN Enable/disable Attraction Mode
 0D TEST_EN Speed Function
 0E ICON_EN SGB Function
 0F DATA_SND SUPER NES WRAM Transfer 1
 10 DATA_TRN SUPER NES WRAM Transfer 2
 11 MLT_REG Controller 2 Request
 12 JUMP Set SNES Program Counter
 13 CHR_TRN Transfer Character Font Data
 14 PCT_TRN Set Screen Data Color Data
 15 ATTR_TRN Set Attribute from ATF
 16 ATTR_SET Set Data to ATF

 17 MASK_EN Game Boy Window Mask
 18 OBJ_TRN Super NES OBJ Mode

 SGB Color Palettes Overview

Available SNES Palettes
The SGB/SNES provides 8 palettes of 16 colors each, each color may be defined out of a
selection of 34768 colors (15 bit). Palettes 0-3 are used to colorize the gamescreen, only
the first four colors of each of these palettes are used. Palettes 4-7 are used for the SGB
Border, all 16 colors of each of these palettes may be used.

Color 0 Restriction
Color 0 of each of the eight palettes is transparent, causing the backdrop color to be
displayed instead. The backdrop color is typically defined by the most recently color
being assigned to Color 0 (regardless of the palette number being used for that operation).
Effectively, gamescreen palettes can have only three custom colors each, and SGB border
palettes only 15 colors each, additionally, color 0 can be used for for all palettes, which
will then all share the same color though.

Translation of Grayshades into Colors
Because the SGB/SNES reads out the gameboy video controllers display signal, it
translates the different grayshades from the signal into SNES colors as such:
 White --> Color 0
 Light Gray --> Color 1
 Dark Gray --> Color 2
 Black --> Color 3

Note that gameboy colors 0-3 are assigned to user-selectable grayshades by the gameboys
BGP, OBP1, and OBP2 registers. There is thus no fixed relationship between gameboy
colors 0-3 and SNES colors 0-3.

Using Gameboy BGP/OBP Registers
A direct translation of color 0-3 into color 0-3 may be produced by setting BGP/OBP
registers to a value of 0E4h each. However, in case that your program uses black
background for example, then you may internally assign background as "White" at the
gameboy side by BGP/OBP registers (which is then interpreted as SNES color 0, which
is shared for all SNES palettes). The advantage is that you may define Color 0 as Black at
the SNES side, and may assign custom colors for Colors 1-3 of each SNES palette.

System Color Palette Memory
Beside for the actually visible palettes, up to 512 palettes of 4 colors each may be defined
in SNES RAM. Basically, this is completely irrelevant because the palettes are just stored
in RAM whithout any relationship to the displayed picture, anyways, these pre-defined
colors may be transferred to actually visible palettes slightly faster as when transferring
palette data by separate command packets.

 SGB Palette Commands

SGB Command 00h - PAL01
Transmit color data for SGB palette 0, color 0-3, and for SGB palette 1, color 1-3
(without separate color 0).
 Byte Content
 0 Command*8+Length (fixed length=01h)
 1-E Color Data for 7 colors of 2 bytes (16bit) each:
 Bit 0-4 - Red Intensity (0-31)
 Bit 5-9 - Green Intensity (0-31)
 Bit 10-14 - Blue Intensity (0-31)
 Bit 15 - Not used (zero)
 F Not used (00h)

The value transferred as color 0 will be applied for all eight palettes.

SGB Command 01h - PAL23
Same as above PAL01, but for Palettes 2 and 3 respectively.

SGB Command 02h - PAL03
Same as above PAL01, but for Palettes 0 and 3 respectively.

SGB Command 03h - PAL12
Same as above PAL01, but for Palettes 1 and 2 respectively.

SGB Command 0Ah - PAL_SET
Used to copy pre-defined palette data from SGB system color palette to actual SGB
palette.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1-2 System Palette number for SGB Color Palette 0 (0-511)
 3-4 System Palette number for SGB Color Palette 1 (0-511)
 5-6 System Palette number for SGB Color Palette 2 (0-511)
 7-8 System Palette number for SGB Color Palette 3 (0-511)
 9 Attribute File
 Bit 0-5 - Attribute File Number (00h-2Ch) (Used only if
Bit7=1)
 Bit 6 - Cancel Mask (0=No change, 1=Yes)
 Bit 7 - Use Attribute File (0=No, 1=Apply above ATF
Number)
 A-F Not used (zero)

Before using this function, System Palette data should be initialized by PAL_TRN
command, and (when used) Attribute File data should be initialized by ATTR_TRN.

SGB Command 0Bh - PAL_TRN
Used to initialize SGB system color palettes in SNES RAM.
System color palette memory contains 512 pre-defined palettes, these palettes do not
directly affect the display, however, the PAL_SET command may be later used to
transfer four of these 'logical' palettes to actual visible 'physical' SGB palettes. Also, the

OBJ_TRN function will use groups of 4 System Color Palettes (4*4 colors) for SNES
OBJ palettes (16 colors).
 Byte Content
 0 Command*8+Length (fixed length=1)
 1-F Not used (zero)

The palette data is sent by VRAM-Transfer (4 KBytes).
 000-FFF Data for System Color Palette 0-511

Each Palette consists of four 16bit-color definitions (8 bytes).
Note: The data is stored at 3000h-3FFFh in SNES memory.

 SGB Color Attribute Commands

SGB Command 04h - ATTR_BLK
Used to specify color attributes for the inside or outside of one or more rectangular screen
regions.
 Byte Content
 0 Command*8+Length (length=1..7)
 1 Number of Data Sets (01h..12h)
 2-7 Data Set #1
 Byte 0 - Control Code (0-7)
 Bit 0 - Change Colors inside of surrounded area (1=Yes)
 Bit 1 - Change Colors of surrounding character line (1=Yes)
 Bit 2 - Change Colors outside of surrounded area (1=Yes)
 Bit 3-7 - Not used (zero)
 Exception: When changing only the Inside or Outside, then
the
 Surrounding line becomes automatically changed to same
color.
 Byte 1 - Color Palette Designation
 Bit 0-1 - Palette Number for inside of surrounded area
 Bit 2-3 - Palette Number for surrounding character line
 Bit 4-5 - Palette Number for outside of surrounded area
 Bit 6-7 - Not used (zero)
 Data Set Byte 2 - Coordinate X1 (left)
 Data Set Byte 3 - Coordinate Y1 (upper)
 Data Set Byte 4 - Coordinate X2 (right)
 Data Set Byte 5 - Coordinate Y2 (lower)
 Specifies the coordinates of the surrounding rectangle.
 8-D Data Set #2 (if any)
 E-F Data Set #3 (continued at 0-3 in next packet) (if any)

When sending three or more data sets, data is continued in further packet(s). Unused
bytes at the end of the last packet should be set to zero. The format of the separate Data
Sets is described below.

SGB Command 05h - ATTR_LIN
Used to specify color attributes of one or more horizontal or vertical character lines.
 Byte Content
 0 Command*8+Length (length=1..7)
 1 Number of Data Sets (01h..6Eh) (one byte each)

 2 Data Set #1
 Bit 0-4 - Line Number (X- or Y-coordinate, depending on
bit 7)
 Bit 5-6 - Palette Number (0-3)
 Bit 7 - H/V Mode Bit (0=Vertical line, 1=Horizontal Line)
 3 Data Set #2 (if any)
 4 Data Set #3 (if any)
 etc.

When sending 15 or more data sets, data is continued in further packet(s). Unused bytes
at the end of the last packet should be set to zero. The format of the separate Data Sets
(one byte each) is described below.
The length of each line reaches from one end of the screen to the other end. In case that
some lines overlap each other, then lines from lastmost data sets will overwrite lines from
previous data sets.

SGB Command 06h - ATTR_DIV
Used to split the screen into two halfes, and to assign separate color attributes to each
half, and to the division line between them.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Color Palette Numbers and H/V Mode Bit
 Bit 0-1 Palette Number below/right of division line
 Bit 2-3 Palette Number above/left of division line
 Bit 4-5 Palette Number for division line
 Bit 6 H/V Mode Bit (0=split left/right, 1=split
above/below)
 2 X- or Y-Coordinate (depending on H/V bit)
 3-F Not used (zero)

SGB Command 07h - ATTR_CHR
Used to specify color attributes for separate characters.
 Byte Content
 0 Command*8+Length (length=1..6)
 1 Beginning X-Coordinate
 2 Beginning Y-Coordinate
 3-4 Number of Data Sets (1-360)
 5 Writing Style (0=Left to Right, 1=Top to Bottom)
 6 Data Sets 1-4 (Set 1 in MSBs, Set 4 in LSBs)
 7 Data Sets 5-8 (if any)
 8 Data Sets 9-12 (if any)
 etc.

When sending 41 or more data sets, data is continued in further packet(s). Unused bytes
at the end of the last packet should be set to zero. Each data set consists of two bits,
indicating the palette number for one character.
Depending on the writing style, data sets are written from left to right, or from top to
bottom. In either case the function wraps to the next row/column when reaching the end
of the screen.

SGB Command 15h - ATTR_TRN
Used to initialize Attribute Files (ATFs) in SNES RAM. Each ATF consists of 20x18

color attributes for the gameboy screen. This function does not directly affect display
attributes. Instead, one of the defined ATFs may be copied to actual display memory at a
later time by using ATTR_SET or PAL_SET functions.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1-F Not used (zero)

The ATF data is sent by VRAM-Transfer (4 KBytes).
 000-FD1 Data for ATF0 through ATF44 (4050 bytes)
 FD2-FFF Not used

Each ATF consists of 90 bytes, that are 5 bytes (20x2bits) for each of the 18 character
lines of the gameboy window. The two most significant bits of the first byte define the
color attribute (0-3) for the first character of the first line, the next two bits the next
character, and so on.

SGB Command 16h - ATTR_SET
Used to transfer attributes from Attribute File (ATF) to gameboy window.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Attribute File Number (00-2Ch), Bit 6=Cancel Mask
 2-F Not used (zero)

When above Bit 6 is set, the gameboy screen becomes re-enabled after the transfer (in
case it has been disabled/frozen by MASK_EN command).
Note: The same functions may be (optionally) also included in PAL_SET commands, as
described in the chapter about Color Palette Commands.

 SGB Sound Functions

SGB Command 08h - SOUND
Used to start/stop internal sound effect, start/stop sound using internal tone data.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Sound Effect A (Port 1) Decrescendo 8bit Sound Code
 2 Sound Effect B (Port 2) Sustain 8bit Sound Code
 3 Sound Effect Attributes
 Bit 0-1 - Sound Effect A Pitch (0..3=Low..High)
 Bit 2-3 - Sound Effect A Volume (0..2=High..Low, 3=Mute on)
 Bit 4-5 - Sound Effect B Pitch (0..3=Low..High)
 Bit 6-7 - Sound Effect B Volume (0..2=High..Low, 3=Not used)
 4 Music Score Code (must be zero if not used)
 5-F Not used (zero)

See Sound Effect Tables below for a list of available pre-defined effects.
"Notes"
1) Mute is only active when both bits D2 and D3 are 1.
2) When the volume is set for either Sound Effect A or Sound Effect B, mute is turned
off.
3) When Mute on/off has been executed, the sound fades out/fades in.
4) Mute on/off operates on the (BGM) which is reproduced by Sound Effect A, Sound

Effect B, and the Super NES APU. A "mute off" flag does not exist by itself. When mute
flag is set, volume and pitch of Sound Effect A (port 1) and Sound Effect B (port 2) must
be set.

SGB Command 09h - SOU_TRN
Used to transfer sound code or data to SNES Audio Processing Unit memory (APU-
RAM).
 Byte Content
 0 Command*8+Length (fixed length=1)
 1-F Not used (zero)

The sound code/data is sent by VRAM-Transfer (4 KBytes).
 000 One (or two ???) 16bit expression(s ???) indicating the
 transfer destination address and transfer length.
 ...-... Transfer Data
 ...-FFF Remaining bytes not used

Possible destinations in APU-RAM are:
 0400h-2AFFh APU-RAM Program Area (9.75KBytes)
 2B00h-4AFFh APU-RAM Sound Score Area (8Kbytes)
 4DB0h-EEFFh APU-RAM Sampling Data Area (40.25 Kbytes)

This function may be used to take control of the SNES sound chip, and/or to access the
SNES MIDI engine. In either case it requires deeper knowledge of SNES sound
programming.

SGB Sound Effect A/B Tables
Below lists the digital sound effects that are pre-defined in the SGB/SNES BIOS, and
which can be used with the SGB "SOUND" Command.
Effect A and B may be simultaneously reproduced.
The P-column indicates the recommended Pitch value, the V-column indicates the
numbers of Voices used. Sound Effect A uses voices 6,7. Sound Effect B uses voices
0,1,4,5. Effects that use less voices will use only the upper voices (eg. 4,5 for Effect B
with only two voices).

Sound Effect A Flag Table
 Code Description P V Code Description P V
 00 Dummy flag, re-trigger - 2 18 Fast Jump 3 1
 80 Effect A, stop/silent - 2 19 Jet (rocket) takeoff 0 1
 01 Nintendo 3 1 1A Jet (rocket) landing 0 1
 02 Game Over 3 2 1B Cup breaking 2 2
 03 Drop 3 1 1C Glass breaking 1 2
 04 OK ... A 3 2 1D Level UP 2 2
 05 OK ... B 3 2 1E Insert air 1 1
 06 Select...A 3 2 1F Sword swing 1 1
 07 Select...B 3 1 20 Water falling 2 1
 08 Select...C 2 2 21 Fire 1 1
 09 Mistake...Buzzer 2 1 22 Wall collapsing 1 2
 0A Catch Item 2 2 23 Cancel 1 2
 0B Gate squeaks 1 time 2 2 24 Walking 1 2
 0C Explosion...small 1 2 25 Blocking strike 1 2
 0D Explosion...medium 1 2 26 Picture floats on & off 3 2
 0E Explosion...large 1 2 27 Fade in 0 2

 0F Attacked...A 3 1 28 Fade out 0 2
 10 Attacked...B 3 2 29 Window being opened 1 2
 11 Hit (punch)...A 0 2 2A Window being closed 0 2
 12 Hit (punch)...B 0 2 2B Big Laser 3 2
 13 Breath in air 3 2 2C Stone gate closes/opens 0 2
 14 Rocket Projectile...A 3 2 2D Teleportation 3 1
 15 Rocket Projectile...B 3 2 2E Lightning 0 2
 16 Escaping Bubble 2 1 2F Earthquake 0 2
 17 Jump 3 1 30 Small Laser 2 2

Sound effect A is used for formanto sounds (percussion sounds).

Sound Effect B Flag Table
 Code Description P V Code Description P V
 00 Dummy flag, re-trigger - 4 0D Waterfall 2 2
 80 Effect B, stop/silent - 4 0E Small character running 3 1
 01 Applause...small group 2 1 0F Horse running 3 1
 02 Applause...medium group 2 2 10 Warning sound 1 1
 03 Applause...large group 2 4 11 Approaching car 0 1
 04 Wind 1 2 12 Jet flying 1 1
 05 Rain 1 1 13 UFO flying 2 1
 06 Storm 1 3 14 Electromagnetic waves 0 1
 07 Storm with wind/thunder 2 4 15 Score UP 3 1
 08 Lightning 0 2 16 Fire 2 1
 09 Earthquake 0 2 17 Camera shutter, formanto 3 4
 0A Avalanche 0 2 18 Write, formanto 0 1
 0B Wave 0 1 19 Show up title, formanto 0 1
 0C River 3 2

Sound effect B is mainly used for looping sounds (sustained sounds).

 SGB System Control Commands

SGB Command 17h - MASK_EN
Used to mask the gameboy window, among others this can be used to freeze the gameboy
screen before transferring data through VRAM (the SNES then keeps displaying the
gameboy screen, even though VRAM doesn't contain meaningful display information
during the transfer).
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Gameboy Screen Mask (0-3)
 0 Cancel Mask (Display activated)
 1 Freeze Screen (Keep displaying current picture)
 2 Blank Screen (Black)
 3 Blank Screen (Color 0)
 2-F Not used (zero)

Freezing works only if the SNES has stored a picture, ie. if necessary wait one or two
frames before freezing (rather than freezing directly after having displayed the picture).
The Cancel Mask function may be also invoked (optionally) by completion of PAL_SET
and ATTR_SET commands.

SGB Command 0Ch - ATRC_EN

Used to enable/disable Attraction mode. It is totally unclear what an attraction mode is
???, but it is enabled by default.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Attraction Disable (0=Enable, 1=Disable)
 2-F Not used (zero)

SGB Command 0Dh - TEST_EN
Used to enable/disable test mode for "SGB-CPU variable clock speed function". This
function is disabled by default.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Test Mode Enable (0=Disable, 1=Enable)
 2-F Not used (zero)

Maybe intended to determine whether SNES operates at 50Hz or 60Hz display refresh
rate ??? Possibly result can be read-out from joypad register ???

SGB Command 0Eh - ICON_EN
Used to enable/disable ICON function. Possibly meant to enable/disable SGB/SNES
popup menues which might otherwise activated during gameboy game play. By default
all functions are enabled (0).
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Disable Bits
 Bit 0 - Use of SGB-Built-in Color Palettes (1=Disable)
 Bit 1 - Controller Set-up Screen (0=Enable, 1=Disable)
 Bit 2 - SGB Register File Transfer (0=Receive, 1=Disable)
 Bit 3-6 - Not used (zero)
 2-F Not used (zero)

Above Bit 2 will suppress all further packets/commands when set, this might be useful
when starting a monochrome game from inside of the SGB-menu of a multi-gamepak
which contains a collection of different games.

SGB Command 0Fh - DATA_SND
Used to write one or more bytes directly into SNES Work RAM.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 SNES Destination Address, low
 2 SNES Destination Address, high
 3 SNES Destination Address, bank number
 4 Number of bytes to write (01h-0Bh)
 5 Data Byte #1
 6 Data Byte #2 (if any)
 7 Data Byte #3 (if any)
 etc.

Unused bytes at the end of the packet should be set to zero, this function is restricted to a
single packet, so that not more than 11 bytes can be defined at once.
Free Addresses in SNES memory are Bank 0 1800h-1FFFh, Bank 7Fh 0000h-FFFFh.

SGB Command 10h - DATA_TRN
Used to transfer binary code or data directly into SNES RAM.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 SNES Destination Address, low
 2 SNES Destination Address, high
 3 SNES Destination Address, bank number
 4-F Not used (zero)

The data is sent by VRAM-Transfer (4 KBytes).
 000-FFF Data

Free Addresses in SNES memory are Bank 0 1800h-1FFFh, Bank 7Fh 0000h-FFFFh.
The transfer length is fixed at 4KBytes ???, so that directly writing to the free 2KBytes at
0:1800h would be a not so good idea ???

SGB Command 12h - JUMP
Used to set the SNES program counter to a specified address. Optionally, it may be used
to set a new address for the SNES NMI handler, the NMI handler remains unchanged if
all bytes 4-6 are zero.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 SNES Program Counter, low
 2 SNES Program Counter, high
 3 SNES Program Counter, bank number
 4 SNES NMI Handler, low
 5 SNES NMI Handler, high
 6 SNES NMI Handler, bank number
 7-F Not used, zero

Note: The game "Space Invaders 94" uses this function when selecting "Arcade mode" to
execute SNES program code which has been previously transferred from the SGB to the
SNES. The type of the CPU which is used in the SNES is unknown ???

 SGB Multiplayer Command

SGB Command 11h - MLT_REQ
Used to request multiplayer mode (ie. input from more than one joypad).
Because this function provides feedback from the SGB/SNES to the gameboy program, it
is also used to detect SGB hardware.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Multiplayer Control (0-3) (Bit0=Enable, Bit1=Two/Four Players)
 0 = One player
 1 = Two players
 3 = Four players
 2-F Not used (zero)

In one player mode, the second joypad (if any) is used for the SGB system program. In
two player mode, both joypads are used for the game. Because SNES have only two
joypad sockets, four player mode requires an external "Multiplayer 5" adapter.

Reading Multiple Controllers (Joypads)
When having enabled multiple controllers by MLT_REQ, data for each joypad can be
read out through JOYPAD register (FF00) as follows: First set P14 and P15 both HIGH
(deselect both Buttons and Cursor keys), you can now read the lower 4bits of FF00 which
indicate the joypad ID for the following joypad input:
 0Fh Joypad 1
 0Eh Joypad 2
 0Dh Joypad 3
 0Ch Joypad 4

Next, set P14 and P15 low (one after each other) to select Buttons and Cursor lines, and
read-out joypad state as normally. When completed, set P14 and P15 back HIGH, this
automatically increments the joypad number (or restarts counting once reached the
lastmost joypad). Repeat the procedure until you have read-out states for all two (or four)
joypads.

 SGB Border and OBJ Commands

SGB Command 13h - CHR_TRN
Used to transfer tile data (characters) to SNES Tile memory in VRAM. This normally
used to define BG tiles for the SGB Border (see PCT_TRN), but might be also used to
define moveable SNES foreground sprites (see OBJ_TRN).
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Tile Transfer Destination
 Bit 0 - Tile Numbers (0=Tiles 00h-7Fh, 1=Tiles 80h-FFh)
 Bit 1 - Tile Type (0=BG Tiles, 1=OBJ Tiles)
 Bit 2-7 - Not used (zero)
 2-F Not used (zero)

The tile data is sent by VRAM-Transfer (4 KBytes).
 000-FFF Bitmap data for 128 Tiles

Each tile occupies 16bytes (8x8 pixels, 16 colors each).
When intending to transfer more than 128 tiles, call this function twice (once for tiles
00h-7Fh, and once for tiles 80h-FFh). Note: The BG/OBJ Bit seems to have no effect and
writes to the same VRAM addresses for both BG and OBJ ???

SGB Command 14h - PCT_TRN
Used to transfer tile map data and palette data to SNES BG Map memory in VRAM to be
used for the SGB border. The actual tiles must be separately transferred by using the
CHR_TRN function.
 Byte Content
 0 Command*8+Length (fixed length=1)
 1-F Not used (zero)

The map data is sent by VRAM-Transfer (4 KBytes).
 000-7FF BG Map 32x32 Entries of 16bit each (2048 bytes)
 800-87F BG Palette Data (Palettes 4-7, each 16 colors of 16bits
each)
 880-FFF Not used, don't care

Each BG Map Entry consists of a 16bit value as such:
 Bit 0-9 - Character Number (use only 00h-FFh, upper 2 bits zero)
 Bit 10-12 - Palette Number (use only 4-7, officially use only 4-6)
 Bit 13 - BG Priority (use only 0)
 Bit 14 - X-Flip (0=Normal, 1=Mirror horizontally)
 Bit 15 - Y-Flip (0=Normal, 1=Mirror vertically)

Even though 32x32 map entries are transferred, only upper 32x28 are actually used
(256x224 pixels, SNES screen size). The 20x18 entries in the center of the 32x28 area
should be set to 0000h as transparent space for the gameboy window to be displayed
inside. Reportedly, non-transparent border data will cover the gameboy window.

SGB Command 18h - OBJ_TRN
Used to transfer OBJ attributes to SNES OAM memory. Unlike all other functions with
the ending _TRN, this function does not use the usual one-shot 4KBytes VRAM transfer
method.
Instead, when enabled (below execute bit set), data is permanently (each frame) read out
from the lower character line of the gameboy screen. To suppress garbage on the display,
the lower line is masked, and only the upper 20x17 characters of the gameboy window
are used - the masking method is unknwon - frozen, black, or recommended to be
covered by the SGB border, or else ??? Also, when the function is enabled, "system
attract mode is not performed" - whatever that means ???
 Byte Content
 0 Command*8+Length (fixed length=1)
 1 Control Bits
 Bit 0 - SNES OBJ Mode enable (0=Cancel, 1=Enable)
 Bit 1 - Change OBJ Color (0=No, 1=Use definitions
below)
 Bit 2-7 - Not used (zero)
 2-3 System Color Palette Number for OBJ Palette 4 (0-511)
 4-5 System Color Palette Number for OBJ Palette 5 (0-511)
 6-7 System Color Palette Number for OBJ Palette 6 (0-511)
 8-9 System Color Palette Number for OBJ Palette 7 (0-511)
 These color entries are ignored if above Control Bit 1 is
zero.
 Because each OBJ palette consists of 16 colors, four system
 palette entries (of 4 colors each) are transferred into each
 OBJ palette. The system palette numbers are not required to
be
 aligned to a multiple of four, and will wrap to palette
number
 0 when exceeding 511. For example, a value of 511 would copy
 system palettes 511, 0, 1, 2 to the SNES OBJ palette.
 A-F Not used (zero)

The recommended method is to "display" gameboy BG tiles F9h..FFh from left to right
as first 7 characters of the bottom-most character line of the gameboy screen. As for
normal 4KByte VRAM transfers, this area should not be scrolled, should not be
overlapped by gameboy OBJs, and the gameboy BGP palette register should be set up
properly. By following that method, SNES OAM data can be defined in the 70h bytes of
the gameboy BG tile memory at following addresses:
 8F90-8FEF SNES OAM, 24 Entries of 4 bytes each (96 bytes)
 8FF0-8FF5 SNES OAM MSBs, 24 Entries of 2 bits each (6 bytes)

 8FF6-8FFF Not used, don't care (10 bytes)

The format of SNES OAM Entries is:
 Byte 0 OBJ X-Position (0-511, MSB is separately stored, see below)
 Byte 1 OBJ Y-Position (0-255)
 Byte 2-3 Attributes (16bit)
 Bit 0-8 Tile Number (use only 00h-FFh, upper bit zero)
 Bit 9-11 Palette Number (use only 4-7)
 Bit 12-13 OBJ Priority (use only 3)
 Bit 14 X-Flip (0=Normal, 1=Mirror horizontally)
 Bit 15 Y-Flip (0=Normal, 1=Mirror vertically)

The format of SNES OAM MSB Entries is:
 Actually, the format is unknown ??? However, 2 bits are used per
entry:
 One bit is the most significant bit of the OBJ X-Position.
 The other bit specifies the OBJ size (8x8 or 16x16 pixels).

 CPU Registers and Flags

Registers
 16bit Hi Lo Name/Function
 AF A - Accumulator & Flags
 BC B C BC
 DE D E DE
 HL H L HL
 SP - - Stack Pointer
 PC - - Program Counter/Pointer

As shown above, most registers can be accessed either as one 16bit register, or as two
separate 8bit registers.

The Flag Register (lower 8bit of AF register)
 Bit Name Set Clr Expl.
 7 zf Z NZ Zero Flag
 6 n - - Add/Sub-Flag (BCD)
 5 h - - Half Carry Flag (BCD)
 4 cy C NC Carry Flag
 3-0 - - - Not used (always zero)

Conatins the result from the recent instruction which has affected flags.

The Zero Flag (Z)
This bit becomes set (1) if the result of an operation has been zero (0). Used for
conditional jumps.

The Carry Flag (C, or Cy)
Becomes set when the result of an addition became bigger than FFh (8bit) or FFFFh
(16bit). Or when the result of a subtraction or comparision became less than zero (much
as for Z80 and 80x86 CPUs, but unlike as for 65XX and ARM CPUs). Also the flag
becomes set when a rotate/shift operation has shifted-out a "1"-bit.
Used for conditional jumps, and for instructions such like ADC, SBC, RL, RLA, etc.

The BCD Flags (N, H)
These flags are (rarely) used for the DAA instruction only, N Indicates whether the
previous instruction has been an addition or subtraction, and H indicates carry for lower
4bits of the result, also for DAA, the C flag must indicate carry for upper 8bits.
After adding/subtracting two BCD numbers, DAA is intended to convert the result into
BCD format; BCD numbers are ranged from 00h to 99h rather than 00h to FFh.
Because C and H flags must contain carry-outs for each digit, DAA cannot be used for
16bit operations (which have 4 digits), or for INC/DEC operations (which do not affect
C-flag).

 CPU Instruction Set

Tables below specify the mnemonic, opcode bytes, clock cycles, affected flags (ordered
as znhc), and explanatation.
The timings assume a CPU clock frequency of 4.194304 MHz (or 8.4
MHz for CGB in double speed mode), as all gameboy timings are divideable
by 4, many people specify timings and clock frequency divided by 4.

GMB 8bit-Loadcommands
 ld r,r xx 4 ---- r=r
 ld r,n xx nn 8 ---- r=n
 ld r,(HL) xx 8 ---- r=(HL)
 ld (HL),r 7x 8 ---- (HL)=r
 ld (HL),n 36 nn 12 ----
 ld A,(BC) 0A 8 ----
 ld A,(DE) 1A 8 ----
 ld A,(nn) FA 16 ----
 ld (BC),A 02 8 ----
 ld (DE),A 12 8 ----
 ld (nn),A EA 16 ----
 ld A,(FF00+n) F0 nn 12 ---- read from io-port n (memory
FF00+n)
 ld (FF00+n),A E0 nn 12 ---- write to io-port n (memory FF00+n)
 ld A,(FF00+C) F2 8 ---- read from io-port C (memory
FF00+C)
 ld (FF00+C),A E2 8 ---- write to io-port C (memory FF00+C)
 ldi (HL),A 22 8 ---- (HL)=A, HL=HL+1
 ldi A,(HL) 2A 8 ---- A=(HL), HL=HL+1
 ldd (HL),A 32 8 ---- (HL)=A, HL=HL-1
 ldd A,(HL) 3A 8 ---- A=(HL), HL=HL-1

GMB 16bit-Loadcommands
 ld rr,nn x1 nn nn 12 ---- rr=nn (rr may be BC,DE,HL or SP)
 ld SP,HL F9 8 ---- SP=HL
 push rr x5 16 ---- SP=SP-2 (SP)=rr (rr may be
BC,DE,HL,AF)
 pop rr x1 12 (AF) rr=(SP) SP=SP+2 (rr may be
BC,DE,HL,AF)

GMB 8bit-Arithmetic/logical Commands
 add A,r 8x 4 z0hc A=A+r
 add A,n C6 nn 8 z0hc A=A+n
 add A,(HL) 86 8 z0hc A=A+(HL)
 adc A,r 8x 4 z0hc A=A+r+cy
 adc A,n CE nn 8 z0hc A=A+n+cy
 adc A,(HL) 8E 8 z0hc A=A+(HL)+cy
 sub r 9x 4 z1hc A=A-r
 sub n D6 nn 8 z1hc A=A-n
 sub (HL) 96 8 z1hc A=A-(HL)
 sbc A,r 9x 4 z1hc A=A-r-cy
 sbc A,n DE nn 8 z1hc A=A-n-cy
 sbc A,(HL) 9E 8 z1hc A=A-(HL)-cy
 and r Ax 4 z010 A=A & r
 and n E6 nn 8 z010 A=A & n
 and (HL) A6 8 z010 A=A & (HL)
 xor r Ax 4 z000
 xor n EE nn 8 z000
 xor (HL) AE 8 z000
 or r Bx 4 z000 A=A | r
 or n F6 nn 8 z000 A=A | n
 or (HL) B6 8 z000 A=A | (HL)
 cp r Bx 4 z1hc compare A-r
 cp n FE nn 8 z1hc compare A-n
 cp (HL) BE 8 z1hc compare A-(HL)
 inc r xx 4 z0h- r=r+1
 inc (HL) 34 12 z0h- (HL)=(HL)+1
 dec r xx 4 z1h- r=r-1
 dec (HL) 35 12 z1h- (HL)=(HL)-1
 daa 27 4 z-0x decimal adjust akku
 cpl 2F 4 -11- A = A xor FF

GMB 16bit-Arithmetic/logical Commands
 add HL,rr x9 8 -0hc HL = HL+rr ;rr may be
BC,DE,HL,SP
 inc rr x3 8 ---- rr = rr+1 ;rr may be
BC,DE,HL,SP
 dec rr xB 8 ---- rr = rr-1 ;rr may be
BC,DE,HL,SP
 add SP,dd E8 16 00hc SP = SP +/- dd ;dd is 8bit signed
number
 ld HL,SP+dd F8 12 00hc HL = SP +/- dd ;dd is 8bit signed
number

GMB Rotate- und Shift-Commands
 rlca 07 4 000c rotate akku left
 rla 17 4 000c rotate akku left through carry
 rrca 0F 4 000c rotate akku right
 rra 1F 4 000c rotate akku right through carry
 rlc r CB 0x 8 z00c rotate left
 rlc (HL) CB 06 16 z00c rotate left
 rl r CB 1x 8 z00c rotate left through carry
 rl (HL) CB 16 16 z00c rotate left through carry

 rrc r CB 0x 8 z00c rotate right
 rrc (HL) CB 0E 16 z00c rotate right
 rr r CB 1x 8 z00c rotate right through carry
 rr (HL) CB 1E 16 z00c rotate right through carry
 sla r CB 2x 8 z00c shift left arithmetic (b0=0)
 sla (HL) CB 26 16 z00c shift left arithmetic (b0=0)
 swap r CB 3x 8 z000 exchange low/hi-nibble
 swap (HL) CB 36 16 z000 exchange low/hi-nibble
 sra r CB 2x 8 z00c shift right arithmetic (b7=b7)
 sra (HL) CB 2E 16 z00c shift right arithmetic (b7=b7)
 srl r CB 3x 8 z00c shift right logical (b7=0)
 srl (HL) CB 3E 16 z00c shift right logical (b7=0)

GMB Singlebit Operation Commands
 bit n,r CB xx 8 z01- test bit n
 bit n,(HL) CB xx 12 z01- test bit n
 set n,r CB xx 8 ---- set bit n
 set n,(HL) CB xx 16 ---- set bit n
 res n,r CB xx 8 ---- reset bit n
 res n,(HL) CB xx 16 ---- reset bit n

GMB CPU-Controlcommands
 ccf 3F 4 -00c cy=cy xor 1
 scf 37 4 -001 cy=1
 nop 00 4 ---- no operation
 halt 76 N*4 ---- halt until interrupt occurs (low
power)
 stop 10 00 ? ---- low power standby mode (VERY low
power)
 di F3 4 ---- disable interrupts, IME=0
 ei FB 4 ---- enable interrupts, IME=1

GMB Jumpcommands
 jp nn C3 nn nn 16 ---- jump to nn, PC=nn
 jp HL E9 4 ---- jump to HL, PC=HL
 jp f,nn xx nn nn 16;12 ---- conditional jump if nz,z,nc,c
 jr PC+dd 18 dd 12 ---- relative jump to nn (PC=PC+/-7bit)
 jr f,PC+dd xx dd 12;8 ---- conditional relative jump if
nz,z,nc,c
 call nn CD nn nn 24 ---- call to nn, SP=SP-2, (SP)=PC,
PC=nn
 call f,nn xx nn nn 24;12 ---- conditional call if nz,z,nc,c
 ret C9 16 ---- return, PC=(SP), SP=SP+2
 ret f xx 20;8 ---- conditional return if nz,z,nc,c
 reti D9 16 ---- return and enable interrupts
(IME=1)
 rst n xx 16 ---- call to 00,08,10,18,20,28,30,38

 CPU Comparision with Z80

Comparision with 8080

Basically, the gameboy CPU works more like an older 8080 CPU rather than like a more
powerful Z80 CPU. It is, however, supporting CB-prefixed instructions. Also, all known
gameboy assemblers using the more obvious Z80-style syntax, rather than the chaotic
8080-style syntax.

Comparision with Z80
Any DD-, ED-, and FD-prefixed instructions are missing, that means no IX-, IY-
registers, no block commands, and some other missing commands.
All exchange instructions have been removed (including total absence of second register
set), 16bit memory accesses are mostly missing, and 16bit arithmetic functions are
heavily cut-down.
The gameboy has no IN/OUT instructions, instead I/O ports are accessed directly by
normal LD instructions, or by special LD (FF00+n) opcodes.
The sign and parity/overflow flags have been removed.
The gameboy operates approximately as fast as a 4MHz Z80 (8MHz in CGB double
speed mode), execution time of all instructions has been rounded up to a multiple of 4
cycles though.

Moved, Removed, and Added Opcodes
 Opcode Z80 GMB

 08 EX AF,AF LD (nn),SP
 10 DJNZ PC+dd STOP
 22 LD (nn),HL LDI (HL),A
 2A LD HL,(nn) LDI A,(HL)
 32 LD (nn),A LDD (HL),A
 3A LD A,(nn) LDD A,(HL)
 D3 OUT (n),A -
 D9 EXX RETI
 DB IN A,(n) -
 DD <IX> -
 E0 RET PO LD (FF00+n),A
 E2 JP PO,nn LD (FF00+C),A
 E3 EX (SP),HL -
 E4 CALL P0,nn -
 E8 RET PE ADD SP,dd
 EA JP PE,nn LD (nn),A
 EB EX DE,HL -
 EC CALL PE,nn -
 ED <pref> -
 F0 RET P LD A,(FF00+n)
 F2 JP P,nn LD A,(FF00+C)
 F4 CALL P,nn -
 F8 RET M LD HL,SP+dd
 FA JP M,nn LD A,(nn)
 FC CALL M,nn -
 FD <IY> -
 CB3X SLL r/(HL) SWAP r/(HL)

Note: The unused (-) opcodes will lock-up the gameboy CPU when used.

 The Cartridge Header

An internal information area is located at 0100-014F in
each cartridge. It contains the following values:

0100-0103 - Entry Point
After displaying the Nintendo Logo, the built-in boot procedure jumps to this address
(100h), which should then jump to the actual main program in the cartridge. Usually this
4 byte area contains a NOP instruction, followed by a JP 0150h instruction. But not
always.

0104-0133 - Nintendo Logo
These bytes define the bitmap of the Nintendo logo that is displayed when the gameboy
gets turned on. The hexdump of this bitmap is:
 CE ED 66 66 CC 0D 00 0B 03 73 00 83 00 0C 00 0D
 00 08 11 1F 88 89 00 0E DC CC 6E E6 DD DD D9 99
 BB BB 67 63 6E 0E EC CC DD DC 99 9F BB B9 33 3E

The gameboys boot procedure verifies the content of this bitmap (after it has displayed
it), and LOCKS ITSELF UP if these bytes are incorrect. A CGB verifies only the first
18h bytes of the bitmap, but others (for example a pocket gameboy) verify all 30h bytes.

0134-0143 - Title
Title of the game in UPPER CASE ASCII. If it is less than 16 characters then the
remaining bytes are filled with 00's. When inventing the CGB, Nintendo has reduced the
length of this area to 15 characters, and some months later they had the fantastic idea to
reduce it to 11 characters only. The new meaning of the ex-title bytes is described below.

013F-0142 - Manufacturer Code
In older cartridges this area has been part of the Title (see above), in newer cartridges this
area contains an 4 character uppercase manufacturer code. Purpose and Deeper Meaning
unknown.

0143 - CGB Flag
In older cartridges this byte has been part of the Title (see above). In CGB cartridges the
upper bit is used to enable CGB functions. This is required, otherwise the CGB switches
itself into Non-CGB-Mode. Typical values are:
 80h - Game supports CGB functions, but works on old gameboys also.
 C0h - Game works on CGB only (physically the same as 80h).

Values with Bit 7 set, and either Bit 2 or 3 set, will switch the gameboy into a special
non-CGB-mode with uninitialized palettes. Purpose unknown, eventually this has been
supposed to be used to colorize monochrome games that include fixed palette data at a
special location in ROM.

0144-0145 - New Licensee Code
Specifies a two character ASCII licensee code, indicating the company or publisher of the
game. These two bytes are used in newer games only (games that have been released

after the SGB has been invented). Older games are using the header entry at 014B
instead.

0146 - SGB Flag
Specifies whether the game supports SGB functions, common values are:
 00h = No SGB functions (Normal Gameboy or CGB only game)
 03h = Game supports SGB functions

The SGB disables its SGB functions if this byte is set to another value than 03h.

0147 - Cartridge Type
Specifies which Memory Bank Controller (if any) is used in the cartridge, and if further
external hardware exists in the cartridge.
 00h ROM ONLY 13h MBC3+RAM+BATTERY
 01h MBC1 15h MBC4
 02h MBC1+RAM 16h MBC4+RAM
 03h MBC1+RAM+BATTERY 17h MBC4+RAM+BATTERY
 05h MBC2 19h MBC5
 06h MBC2+BATTERY 1Ah MBC5+RAM
 08h ROM+RAM 1Bh MBC5+RAM+BATTERY
 09h ROM+RAM+BATTERY 1Ch MBC5+RUMBLE
 0Bh MMM01 1Dh MBC5+RUMBLE+RAM
 0Ch MMM01+RAM 1Eh MBC5+RUMBLE+RAM+BATTERY
 0Dh MMM01+RAM+BATTERY FCh POCKET CAMERA
 0Fh MBC3+TIMER+BATTERY FDh BANDAI TAMA5
 10h MBC3+TIMER+RAM+BATTERY FEh HuC3
 11h MBC3 FFh HuC1+RAM+BATTERY
 12h MBC3+RAM

0148 - ROM Size
Specifies the ROM Size of the cartridge. Typically calculated as "32KB shl N".
 00h - 32KByte (no ROM banking)
 01h - 64KByte (4 banks)
 02h - 128KByte (8 banks)
 03h - 256KByte (16 banks)
 04h - 512KByte (32 banks)
 05h - 1MByte (64 banks) - only 63 banks used by MBC1
 06h - 2MByte (128 banks) - only 125 banks used by MBC1
 07h - 4MByte (256 banks)
 52h - 1.1MByte (72 banks)
 53h - 1.2MByte (80 banks)
 54h - 1.5MByte (96 banks)

0149 - RAM Size
Specifies the size of the external RAM in the cartridge (if any).
 00h - None
 01h - 2 KBytes
 02h - 8 Kbytes
 03h - 32 KBytes (4 banks of 8KBytes each)

When using a MBC2 chip 00h must be specified in this entry, even though the MBC2
includes a built-in RAM of 512 x 4 bits.

014A - Destination Code
Specifies if this version of the game is supposed to be sold in japan, or anywhere else.
Only two values are defined.
 00h - Japanese
 01h - Non-Japanese

014B - Old Licensee Code
Specifies the games company/publisher code in range 00-FFh. A value of 33h signalizes
that the New License Code in header bytes 0144-0145 is used instead.
(Super GameBoy functions won't work if <> $33.)

014C - Mask ROM Version number
Specifies the version number of the game. That is usually 00h.

014D - Header Checksum
Contains an 8 bit checksum across the cartridge header bytes 0134-014C. The checksum
is calculated as follows:
 x=0:FOR i=0134h TO 014Ch:x=x-MEM[i]-1:NEXT

The lower 8 bits of the result must be the same than the value in this entry. The GAME
WON'T WORK if this checksum is incorrect.

014E-014F - Global Checksum
Contains a 16 bit checksum (upper byte first) across the whole cartridge ROM. Produced
by adding all bytes of the cartridge (except for the two checksum bytes). The Gameboy
doesn't verify this checksum.

 Memory Bank Controllers

As the gameboys 16 bit address bus offers only limited space for ROM and RAM
addressing, many games are using Memory Bank Controllers (MBCs) to expand the
available address space by bank switching. These MBC chips are located in the game
cartridge (ie. not in the gameboy itself), several different MBC types are available:

None (32KByte ROM only)
MBC1 (max 2MByte ROM and/or 32KByte RAM)
MBC2 (max 256KByte ROM and 512x4 bits RAM)
MBC3 (max 2MByte ROM and/or 32KByte RAM and Timer)
HuC1 (MBC with Infrared Controller)

MBC Timing Issues

In each cartridge, the required (or preferred) MBC type should be specified in byte at
0147h of the ROM. (As described in the chapter about The Cartridge Header.)

 None (32KByte ROM only)

Small games of not more than 32KBytes ROM do not require a MBC chip for ROM
banking. The ROM is directly mapped to memory at 0000-7FFFh. Optionally up to
8KByte of RAM could be connected at A000-BFFF, even though that could require a
tiny MBC-like circuit, but no real MBC chip.

 MBC1 (max 2MByte ROM and/or 32KByte RAM)

This is the first MBC chip for the gameboy. Any newer MBC chips are working similiar,
so that is relative easy to upgrade a program from one MBC chip to another - or even to
make it compatible to several different types of MBCs.

Note that the memory in range 0000-7FFF is used for both reading from ROM, and for
writing to the MBCs Control Registers.

0000-3FFF - ROM Bank 00 (Read Only)
This area always contains the first 16KBytes of the cartridge ROM.

4000-7FFF - ROM Bank 01-7F (Read Only)
This area may contain any of the further 16KByte banks of the ROM, allowing to address
up to 125 ROM Banks (almost 2MByte). As described below, bank numbers 20h, 40h,
and 60h cannot be used, resulting in the odd amount of 125 banks.

A000-BFFF - RAM Bank 00-03, if any (Read/Write)
This area is used to address external RAM in the cartridge (if any). External RAM is
often battery buffered, allowing to store game positions or high score tables, even if the
gameboy is turned off, or if the cartridge is removed from the gameboy. Available RAM
sizes are: 2KByte (at A000-A7FF), 8KByte (at A000-BFFF), and 32KByte (in form of
four 8K banks at A000-BFFF).

0000-1FFF - RAM Enable (Write Only)
Before external RAM can be read or written, it must be enabled by writing to this address
space. It is recommended to disable external RAM after accessing it, in order to protect
its contents from damage during power down of the gameboy. Usually the following
values are used:
 00h Disable RAM (default)
 0Ah Enable RAM

Practically any value with 0Ah in the lower 4 bits enables RAM, and any other value
disables RAM.

2000-3FFF - ROM Bank Number (Write Only)
Writing to this address space selects the lower 5 bits of the ROM Bank Number (in range
01-1Fh). When 00h is written, the MBC translates that to bank 01h also. That doesn't

harm so far, because ROM Bank 00h can be always directly accessed by reading from
0000-3FFF.
But (when using the register below to specify the upper ROM Bank bits), the same
happens for Bank 20h, 40h, and 60h. Any attempt to address these ROM Banks will
select Bank 21h, 41h, and 61h instead.

4000-5FFF - RAM Bank Number - or - Upper Bits of ROM Bank Number (Write
Only) This 2bit register can be used to select a RAM Bank in range from 00-03h, or to
specify the upper two bits (Bit 5-6) of the ROM Bank number, depending on the current
ROM/RAM Mode. (See below.)

6000-7FFF - ROM/RAM Mode Select (Write Only)
This 1bit Register selects whether the two bits of the above register should be used as
upper two bits of the ROM Bank, or as RAM Bank Number.
 00h = ROM Banking Mode (up to 8KByte RAM, 2MByte ROM) (default)
 01h = RAM Banking Mode (up to 32KByte RAM, 512KByte ROM)

The program may freely switch between both modes, the only limitiation is that only
RAM Bank 00h can be used during Mode 0, and only ROM Banks 00-1Fh can be used
during Mode 1.

 MBC2 (max 256KByte ROM and 512x4 bits RAM)

0000-3FFF - ROM Bank 00 (Read Only)
Same as for MBC1.

4000-7FFF - ROM Bank 01-0F (Read Only)
Same as for MBC1, but only a total of 16 ROM banks is supported.

A000-A1FF - 512x4bits RAM, built-in into the MBC2 chip (Read/Write)
The MBC2 doesn't support external RAM, instead it includes 512x4 bits of built-in RAM
(in the MBC2 chip itself). It still requires an external battery to save data during power-
off though.
As the data consists of 4bit values, only the lower 4 bits of the "bytes" in this memory
area are used.

0000-1FFF - RAM Enable (Write Only)
The least significant bit of the upper address byte must be zero to enable/disable cart
RAM. For example the following addresses can be used to enable/disable cart RAM:
0000-00FF, 0200-02FF, 0400-04FF, ..., 1E00-1EFF.
The suggested address range to use for MBC2 ram enable/disable is 0000-00FF.

2000-3FFF - ROM Bank Number (Write Only)
Writing a value (XXXXBBBB - X = Don't cares, B = bank select bits) into 2000-3FFF
area will select an appropriate ROM bank at 4000-7FFF.

The least significant bit of the upper address byte must be one to select a ROM bank. For
example the following addresses can be used to select a ROM bank: 2100-21FF, 2300-
23FF, 2500-25FF, ..., 3F00-3FFF.
The suggested address range to use for MBC2 rom bank selection is 2100-21FF.

 MBC3 (max 2MByte ROM and/or 32KByte RAM and
Timer)

Beside for the ability to access up to 2MB ROM (128 banks), and 32KB RAM (4 banks),
the MBC3 also includes a built-in Real Time Clock (RTC). The RTC requires an external
32.768 kHz Quartz Oscillator, and an external battery (if it should continue to tick when
the gameboy is turned off).

0000-3FFF - ROM Bank 00 (Read Only)
Same as for MBC1.

4000-7FFF - ROM Bank 01-7F (Read Only)
Same as for MBC1, except that accessing banks 20h, 40h, and 60h is supported now.

A000-BFFF - RAM Bank 00-03, if any (Read/Write)
A000-BFFF - RTC Register 08-0C (Read/Write)
Depending on the current Bank Number/RTC Register selection (see below), this
memory space is used to access an 8KByte external RAM Bank, or a single RTC
Register.

0000-1FFF - RAM and Timer Enable (Write Only)
Mostly the same as for MBC1, a value of 0Ah will enable reading and writing to external
RAM - and to the RTC Registers! A value of 00h will disable either.

2000-3FFF - ROM Bank Number (Write Only)
Same as for MBC1, except that the whole 7 bits of the RAM Bank Number are written
directly to this address. As for the MBC1, writing a value of 00h, will select Bank 01h
instead. All other values 01-7Fh select the corresponding ROM Banks.

4000-5FFF - RAM Bank Number - or - RTC Register Select (Write Only)
As for the MBC1s RAM Banking Mode, writing a value in range for 00h-03h maps the
corresponding external RAM Bank (if any) into memory at A000-BFFF.
When writing a value of 08h-0Ch, this will map the corresponding RTC register into
memory at A000-BFFF. That register could then be read/written by accessing any
address in that area, typically that is done by using address A000.

6000-7FFF - Latch Clock Data (Write Only)
When writing 00h, and then 01h to this register, the current time becomes latched into the
RTC registers. The latched data will not change until it becomes latched again, by

repeating the write 00h->01h procedure.
This is supposed for <reading> from the RTC registers. It is proof to read the latched
(frozen) time from the RTC registers, while the clock itself continues to tick in
background.

The Clock Counter Registers
 08h RTC S Seconds 0-59 (0-3Bh)
 09h RTC M Minutes 0-59 (0-3Bh)
 0Ah RTC H Hours 0-23 (0-17h)
 0Bh RTC DL Lower 8 bits of Day Counter (0-FFh)
 0Ch RTC DH Upper 1 bit of Day Counter, Carry Bit, Halt Flag
 Bit 0 Most significant bit of Day Counter (Bit 8)
 Bit 6 Halt (0=Active, 1=Stop Timer)
 Bit 7 Day Counter Carry Bit (1=Counter Overflow)

The Halt Flag is supposed to be set before <writing> to the RTC Registers.

The Day Counter
The total 9 bits of the Day Counter allow to count days in range from 0-511 (0-1FFh).
The Day Counter Carry Bit becomes set when this value overflows. In that case the Carry
Bit remains set until the program does reset it.
Note that you can store an offset to the Day Counter in battery RAM. For example, every
time you read a non-zero Day Counter, add this Counter to the offset in RAM, and reset
the Counter to zero. This method allows to count any number of days, making your
program Year-10000-Proof, provided that the cartridge gets used at least every 511 days.

Delays
When accessing the RTC Registers it is recommended to execute a 4ms delay (4 Cycles
in Normal Speed Mode) between the separate accesses.

 HuC1 (MBC with Infrared Controller)

This controller (made by Hudson Soft) appears to be very similar to an MBC1 with the
main difference being that it supports infrared LED input / output. (Similiar to the
infrared port that has been later invented in CGBs.)

The Japanese cart "Fighting Phoenix" (internal cart name: SUPER B DAMAN) is known
to contain this chip.

 MBC Timing Issues

Using MBCs with CGB Double Speed Mode
The MBC5 has been designed to support CGB Double Speed Mode.
There have been rumours that older MBCs (like MBC1-3) wouldn't be fast enough in that
mode. If so, it might be nethertheless possible to use Double Speed during periods which

use only code and data which is located in internal RAM.
However, despite of the above, my own good old selfmade MBC1-EPROM card appears
to work stable and fine even in Double Speed Mode though.

 Gamegenie/Shark Cheats

Game Shark and Gamegenie are external cartridge adapters that can be plugged between
the gameboy and the actual game cartridge. Hexadecimal codes can be then entered for
specific games, typically providing things like Infinite Sex, 255 Cigarettes, or Starting
directly in Wonderland Level PRO, etc.

Gamegenie (ROM patches)
Gamegenie codes consist of nine-digit hex numbers, formatted as ABC-DEF-GHI, the
meaning of the separate digits is:
 AB New data
 FCDE Memory address, XORed by 0F000h
 GI Old data, XORed by 0BAh and rotated left by two
 H Don't know, maybe checksum and/or else

The address should be located in ROM area 0000h-7FFFh, the adapter permanently
compares address/old data with address/data being read by the game, and replaces that
data by new data if necessary. That method (more or less) prohibits unwanted patching of
wrong memory banks. Eventually it is also possible to patch external RAM ?
Newer devices reportedly allow to specify only the first six digits (optionally). As far as I
rememeber, around three or four codes can be used simultaneously.

Game Shark (RAM patches)
Game Shark codes consist of eight-digit hex numbers, formatted as ABCDEFGH, the
meaning of the separate digits is:
 AB External RAM bank number
 CD New Data
 GHEF Memory Address (internal or external RAM, A000-DFFF)

As far as I understand, patching is implement by hooking the original VBlank interrupt
handler, and re-writing RAM values each frame. The downside is that this method steals
some CPU time, also, it cannot be used to patch program code in ROM.
As far as I rememeber, somewhat 10-25 codes can be used simultaneously.

 Power Up Sequence

When the GameBoy is powered up, a 256 byte program starting at memory location 0 is
executed. This program is located in a ROM inside the GameBoy. The first thing the
program does is read the cartridge locations from $104 to $133 and place this graphic of a
Nintendo logo on the screen at the top. This image is then scrolled until it is in the middle
of the screen. Two musical notes are then played on the internal speaker. Again, the
cartridge locations $104 to $133 are read but this time they are compared with a table in

the internal rom. If any byte fails to compare, then the GameBoy stops comparing bytes
and simply halts all operations. If all locations compare the same, then the GameBoy
starts adding all of the bytes in the cartridge from $134 to $14d. A value of 25 decimal is
added to this total. If the least significant byte of the result is a not a zero, then the
GameBoy will stop doing anything. If it is a zero, then the internal ROM is disabled and
cartridge program execution begins at location $100 with the following register values:

 AF=$01B0
 BC=$0013
 DE=$00D8
 HL=$014D
 Stack Pointer=$FFFE
 [$FF05] = $00 ; TIMA
 [$FF06] = $00 ; TMA
 [$FF07] = $00 ; TAC
 [$FF10] = $80 ; NR10
 [$FF11] = $BF ; NR11
 [$FF12] = $F3 ; NR12
 [$FF14] = $BF ; NR14
 [$FF16] = $3F ; NR21
 [$FF17] = $00 ; NR22
 [$FF19] = $BF ; NR24
 [$FF1A] = $7F ; NR30
 [$FF1B] = $FF ; NR31
 [$FF1C] = $9F ; NR32
 [$FF1E] = $BF ; NR33
 [$FF20] = $FF ; NR41
 [$FF21] = $00 ; NR42
 [$FF22] = $00 ; NR43
 [$FF23] = $BF ; NR30
 [$FF24] = $77 ; NR50
 [$FF25] = $F3 ; NR51
 [$FF26] = $F1-GB, $F0-SGB ; NR52
 [$FF40] = $91 ; LCDC
 [$FF42] = $00 ; SCY
 [$FF43] = $00 ; SCX
 [$FF45] = $00 ; LYC
 [$FF47] = $FC ; BGP
 [$FF48] = $FF ; OBP0
 [$FF49] = $FF ; OBP1
 [$FF4A] = $00 ; WY
 [$FF4B] = $00 ; WX
 [$FFFF] = $00 ; IE

It is not a good idea to assume the above values will always exist. A later version
GameBoy could contain different values than these at reset. Always set these registers on
reset rather than assume they are as above.

Please note that GameBoy internal RAM on power up contains random data. All of the
GameBoy emulators tend to set all RAM to value $00 on entry.

Cart RAM the first time it is accessed on a real GameBoy contains random data. It will

only contain known data if the GameBoy code initializes it to some value.

 Reducing Power Consumption

The following can be used to recude the power consumption of the gameboy, and to
extend the life of the batteries.

PWR Using the HALT Instruction
PWR Using the STOP Instruction
PWR Disabeling the Sound Controller
PWR Not using CGB Double Speed Mode
PWR Using the Skills

 PWR Using the HALT Instruction

It is recommended that the HALT instruction be used whenever possible to reduce power
consumption & extend the life of the batteries. This command stops the system clock
reducing the power consumption of both the CPU and ROM.

The CPU will remain suspended until an interrupt occurs at which point the interrupt is
serviced and then the instruction immediately following the HALT is executed.

Depending on how much CPU time is required by a game, the HALT instruction can
extend battery life anywhere from 5 to 50% or possibly more.

When waiting for a vblank event, this would be a BAD example:
 @@wait:
 ld a,(0FF44h) ;LY
 cp a,144
 jr nz,@@wait

A better example would be a procedure as shown below. In this case the vblank interrupt
must be enabled, and your vblank interrupt procedure must set vblank_flag to a non-zero
value.
 ld hl,vblank_flag ;hl=pointer to vblank_flag
 xor a ;a=0
 @@wait: ;wait...
 halt ;suspend CPU - wait for ANY interrupt
 cp a,(hl) ;vblank flag still zero?
 jr z,@@wait ;wait more if zero
 ld (hl),a ;set vblank_flag back to zero

The vblank_flag is used to determine whether the HALT period has been terminated by a
vblank interrupt, or by another interrupt. In case that your program has all other interrupts
disabled, then it would be proof to replace the above procedure by a single HALT

instruction.

 PWR Using the STOP Instruction

The STOP instruction is intended to switch the gameboy into VERY low power standby
mode. For example, a program may use this feature when it hasn't sensed keyboard input
for a longer period (assuming that somebody forgot to turn off the gameboy).

Before invoking STOP, it might be required to disable Sound and Video manually (as
well as IR-link port in CGB). Much like HALT, the STOP state is terminated by interrupt
events - in this case this would be commonly a joypad interrupt. The joypad register
might be required to be prepared for STOP either.

 PWR Disabeling the Sound Controller

If your programs doesn't use sound at all (or during some periods) then write 00h to
register FF26 to save 16% or more on GB power consumption.
Sound can be turned back on by writing 80h to the same register, all sound registers must
be then re-initialized.
When the gameboy becomes turned on, sound is enabled by default, and must be turned
off manually when not used.

 PWR Not using CGB Double Speed Mode

Because CGB Double Speed mode consumes more power, it'd be recommended to use
normal speed when possible.
There's limited ability to switch between both speeds, for example, a game might use
normal speed in the title screen, and double speed in the game, or vice versa.
However, during speed switch the display collapses for a short moment, so that it'd be no
good idea to alter speeds within active game or title screen periods.

 PWR Using the Skills

Most of the above power saving methods will produce best results when using efficient
and tight assembler code which requires as less CPU power as possible. Thus,
experienced old-school programmers will (hopefully) produce lower power consumption,
as than HLL-programming teenagers, for example.

 Sprite RAM Bug

There is a flaw in the GameBoy hardware that causes trash to be written to OAM RAM if

the following commands are used while their 16-bit content is in the range of $FE00 to
$FEFF:
 inc rr dec rr ;rr = bc,de, or hl
 ldi a,(hl) ldd a,(hl)
 ldi (hl),a ldd (hl),a

Only sprites 1 & 2 ($FE00 & $FE04) are not affected by these instructions.

 External Connectors

Cartridge Slot
 Pin Name Expl.
 1 VDD Power Supply +5V DC
 2 PHI System Clock
 3 /WR Write
 4 /RD Read
 5 /CS Chip Select
 6-21 A0-A15 Address Lines
 22-29 D0-D7 Data Lines
 30 /RES Reset signal
 31 VIN External Sound Input
 32 GND Ground

Link Port
Pin numbers are arranged as 2,4,6 in upper row, 1,3,5 un lower row; outside view of
gameboy socket; flat side of socket upside.
Colors as used in most or all standard link cables, because SIN and SOUT are crossed,
colors Red and Orange are exchanged at one cable end.
 Pin Name Color Expl.
 1 VCC - +5V DC
 2 SOUT red Data Out
 3 SIN orange Data In
 4 P14 - Not used
 5 SCK green Shift Clock
 6 GND blue Ground

Note: The original gameboy used larger plugs (unlike pocket gameboys and newer),
linking between older/newer gameboys is possible by using cables with one large and one
small plug though.

Stereo Sound Connector (3.5mm, female)
 Pin Expl.
 Tip Sound Left
 Middle Sound Right
 Base Ground

External Power Supply
...

 END
The information contained in this document is extracted from an old PanDoc file called
GBspec.txt or something similar. I removed the things I thought were already covered in the
other file (the Pan docs file, as can be found in the navigation frame) so there might be
elements that you already read somewhere.
Still, I have the impression that this file does cover some ground not present in the other file.

Echo of 8kB Internal RAM
The addresses E000-FE00 appear to access the internal RAM the same as C000-DE00. (i.e. If
you write a byte to address E000 it will appear at C000 and E000. Similarly, writing a byte to
C000 will appear at C000 and E000.)

User I/O
There are no empty spaces in the memory map for implementing input ports except the
switchable RAM bank area (not an option on the Super Smart Card since it's RAM bank is
always enabled).

An output only port may be implemented anywhere between A000-FDFF. If implemented in a
RAM area care should be taken to use an area of RAM not used for anything else. (FE00 and
above can't be used because the CPU doesn't generate an external /WR for these locations.)

If you have a cart with an MBC1, a ROM 4Mbit or smaller, and a RAM 8Kbyte or smaller (or
no RAM) then you can use pins 6 & 7 of the MBC1 for 2 digital output pins for whatever
purpose you wish. To use them you must first put the MBC1 into 4MbitROM/32KbyteRAM
mode by writing 01 to 6000. The two least significant bits you write to 4000 will then be
output to these pins.

Reserved Memory Locations
The following is a table of reserved memory addresses in ROM space. If you need either
interrupt to be serviced, here are the entry points for the possible interrupt sources.
Address Explanation
0000 Restart $00 Address (RST $00 calls this address.)
0008 Restart $08 Address (RST $08 calls this address.)
0010 Restart $10 Address (RST $10 calls this address.)
0018 Restart $18 Address (RST $18 calls this address.)
0020 Restart $20 Address (RST $20 calls this address.)
0028 Restart $28 Address (RST $28 calls this address.)
0030 Restart $30 Address (RST $30 calls this address.)
0038 Restart $38 Address (RST $38 calls this address.)
0040 Vertical Blank Interrupt Start Address

http://verhoeven272.nl/fruttenboel/Gameboy/index.html

0048 LCDC Status Interrupt Start Address
0050 Timer Overflow Interrupt Start Address
0058 Serial Transfer Completion Interrupt Start Address
0060 High-to-Low of P10-P13 Interrupt Start Address

An internal information area is located at 0100-014F in each cartridge. It contains the
following values:

Address Explanation

0100-
0103

This is the begin code execution point in a cart. Usually there is a NOP and a JP
instruction here but not always.

0104-
0133

Scrolling Nintendo graphic:

 CE ED 66 66 CC 0D 00 0B 03 73 00 83 00 0C 00 0D
 00 08 11 1F 88 89 00 0E DC CC 6E E6 DD DD D9 99
 BB BB 67 63 6E 0E EC CC DD DC 99 9F BB B9 33 3E

(PROGRAM WON'T RUN IF CHANGED!!!)

0134-
0142

Title of the game in UPPER CASE ASCII. If it is less than 16 characters then
the remaining bytes are filled with 00's.

0143 $80 = Color GB, $00 or other = not Color GB

0144 Ascii hex digit, high nibble of licensee code (new).

0145 Ascii hex digit, low nibble of licensee code (new). (These are normally $00 if
[$014B] # $33.)

0146 GB/SGB Indicator (00 = GameBoy, 03 = Super GameBoy functions) (Super
GameBoy functions won't work if # $03.)

0147 Cartridge type:

 0 - ROM ONLY 12 - ROM+MBC3+RAM
 1 - ROM+MBC1 13 - ROM+MBC3+RAM+BATT
 2 - ROM+MBC1+RAM 19 - ROM+MBC5
 3 - ROM+MBC1+RAM+BATT 1A - ROM+MBC5+RAM
 5 - ROM+MBC2 1B - ROM+MBC5+RAM+BATT
 6 - ROM+MBC2+BATTERY 1C - ROM+MBC5+RUMBLE
 8 - ROM+RAM 1D - ROM+MBC5+RUMBLE+SRAM
 9 - ROM+RAM+BATTERY 1E -
ROM+MBC5+RUMBLE+SRAM+BATT
 B - ROM+MMM01 1F - Pocket Camera
 C - ROM+MMM01+SRAM FD - Bandai TAMA5
 D - ROM+MMM01+SRAM+BATT FE - Hudson HuC-3
 F - ROM+MBC3+TIMER+BATT FF - Hudson HuC-1
 10 - ROM+MBC3+TIMER+RAM+BATT
 11 - ROM+MBC3

0148 ROM size:

 0 - 256Kbit = 32KByte = 2 banks
 1 - 512Kbit = 64KByte = 4 banks
 2 - 1Mbit = 128KByte = 8 banks
 3 - 2Mbit = 256KByte = 16 banks
 4 - 4Mbit = 512KByte = 32 banks
 5 - 8Mbit = 1MByte = 64 banks
 6 - 16Mbit = 2MByte = 128 banks
 $52 - 9Mbit = 1.1MByte = 72 banks
 $53 - 10Mbit = 1.2MByte = 80 banks
 $54 - 12Mbit = 1.5MByte = 96 banks

0149 RAM size:

 0 - None
 1 - 16kBit = 2kB = 1 bank
 2 - 64kBit = 8kB = 1 bank
 3 - 256kBit = 32kB = 4 banks
 4 - 1MBit = 128kB = 16 banks

014A Destination code:

 0 - Japanese
 1 - Non-Japanese

014B Licensee code (old):

 33 - Check 0144/0145 for Licensee code.
 79 - Accolade
 A4 - Konami

Super GameBoy function won't work if # $33.

014C Mask ROM Version number (Usually $00)

014D Complement check. PROGRAM WON'T RUN ON GB IF NOT CORRECT!!!
It will run on Super GB, however, if incorrect.

014E-
014F

Checksum (higher byte first) produced by adding all bytes of a cartridge except
for two checksum bytes and taking two lower bytes of the result. (GameBoy
ignores this value.)

Cartridge Types
The following define the byte at cart location 0147:
MBC
type Comments

ROM
ONLY This is a 32kB (256kb) ROM and occupies 0000-7FFF.

MBC1 MBC1 has two different maximum memory modes:

• 16 Mbit ROM / 8 KByte RAM
• 4 Mbit ROM / 32 KByte RAM

The MBC1 defaults to 16 Mbit ROM / 8 KByte RAM mode on power up.
Writing a value (0000000S - S = Memory model select) into 6000-7FFF area
will select the memory model to use. S = 0 selects 16/8 mode. S = 1 selects 4/32
mode.

Writing a value (000BBBBB - B = bank select bits) into 2000-3FFF area will
select an appropriate ROM bank at 4000-7FFF. Values of 00000 and 00001 do
the same thing and point to ROM bank 1. ROM bank 0 is not accessible from
4000-7FFF and can only be read from 0000-3FFF.

If memory model is set to 4/32: Writing a value (000000BB - B = bank select
bits) into 4000-5FFF area will select an appropriate RAM bank at A000-C000.
Before you can read or write to a RAM bank you have to enable it by writing a
00001010 into 0000-1FFF area*.
To disable RAM bank operations write any value but 00001010 into 0000-1FFF
area. Disabling a RAM bank probably protects that bank from false writes during
power down of the GameBoy.

(NOTE: Nintendo suggests values $0A to enable and $00 to disable RAM
bank!!)

If memory model is set to 16/8 mode: Writing a value (000000BB - B = bank
select bits) into 4000-5FFF area will set the two most significant ROM address
lines.

* NOTE: The Super Smart Card doesn't require this operation because it's RAM
bank is ALWAYS enabled. Include this operation anyway to allow your code to
work with both.

MBC2 This memory controller works much like the MBC1 controller with the
following exceptions:

a. MBC2 will work with ROM sizes up to 2Mbit. < 4000-7FFF. at bank
ROM appropriate an select will area 2000-3FFF into bits) B="bank" -
(0000BBBB value a Writing>

b. RAM switching is not provided. Unlike the MBC1 which uses external
RAM, MBC2 has 512 x 4 bits of RAM which is in the controller itself. It
still requires an external battery to save data during power-off though.

c. The least significant bit of the upper address byte must be zero to enable
or disable cart RAM. For example the following addresses can be used to
enable or disable cart RAM: 0000-00FF, 0200-02FF, 0400-04FF, ...,
1E00-1EFF. The suggested address range to use for MBC2 ram enable /

disable is 0000-00FF.
d. The least significant bit of the upper address byte must be "1" to select a

ROM bank. For example the following addresses can be used to select a
ROM bank: 2100-21FF, 2300-23FF, 2500-25FF, ..., 3F00-3FFF. The
suggested address range to use for MBC2 rom bank selection is 2100-
21FF.

MBC3 This controller is similar to MBC1 except it accesses all 16 Mbits of ROM
without requiring any writes to the 4000-5FFF area. Writing a value
(0BBBBBBB - B = bank select bits) into 2000-3FFF area will select an
appropriate ROM bank at 4000-7FFF.

Also, this MBC has a built-in battery-backed Real Time Clock (RTC) not found
in any other MBC. Some MBC3 carts do not support it (WarioLand II non-color
version) but some do (Harvest Moon/Japanese version.)

MBC5 This controller is the first MBC that is guaranteed to run in GameBoy Color
double-speed mode but it appears the other MBC's run fine in GBC double-speed
mode as well.
It is similar to the MBC3 (but no RTC) but can access up to 64 Mbits of ROM
and up to 1 Mbit of RAM. The lower 8 bits of the 9-bit ROM bank select is
written to the 2000-2FFF area while the upper bit is written to the least
significant bit of the 3000-3FFF area.

Writing a value (0000BBBB - B = bank select bits) into 4000-5FFF area will
select an appropriate RAM bank at A000-BFFF if the cart contains RAM. Ram
sizes are 64 Kbit, 256 Kbit and 1 Mbit.
Also, this is the first MBC that allows ROM bank 0 to appear in the 4000-7FFF
range by writing $0000 to the ROM bank select.

Rumble
Carts

Rumble carts use an MBC5 memory bank controller. Rumble carts can only
have up to 256 Kbits of RAM. The highest RAM address line that allows 1 Mbit
of RAM on MBC5 non-rumble carts is used as the motor on/off for the rumble
cart.
Writing a value (0000MBBB - M = motor, B = bank select bits) into 4000-5FFF
area will select an appropriate RAM bank at A000-BFFF if the cart contains
RAM. RAM sizes are 64 Kbit or 256 Kbit. To turn the rumble motor on set M =
1, M = 0 turns it off.

HuC1 This controller (Memory Bank / Infrared Controller) made by Hudson Soft
appears to be very similar to an MBC1 with the main difference being that it
supports InfraRed LED input / output. The Japanese cart "Fighting Phoenix"
(internal cart name: SUPER B DAMAN) is known to contain this chip.

Stop Mode

The STOP command halts the GameBoy processor and screen until any button is pressed. The
GB and GBP screen goes white with a single dark horizontal line. The GBC screen goes
black.

Low-Power Mode
It is recommended that the HALT instruction be used whenever possible to reduce power
consumption and extend the life of the batteries. This command stops the system clock
reducing the power consumption of both the CPU and ROM.

The CPU will remain suspended until an interrupt occurs at which point the interrupt is
serviced and then the instruction immediately following the HALT is executed. If interrupts
are disabled (DI) then halt doesn't suspend operation but it does cause the program counter to
stop counting for one instruction on the GB, GBP and SGB as mentioned below.

Depending on how much CPU time is required by a game, the HALT instruction can extend
battery life anywhere from 5 to 50% or possibly more.

WARNING: The instruction immediately following the HALT instruction is "skipped" when
interrupts are disabled (DI) on the GB, GBP, and SGB. As a result, always put a NOP after
the HALT instruction. This instruction skipping doesn't occur when interrupts are enabled
(EI). This "skipping" does not seem to occur on the GameBoy Color even in regular GB
mode. ($143=$00)

EXAMPLES from Martin Korth who documented this problem: (assuming interrupts disabled
for all examples)

1. This code causes the 'a' register to be incremented TWICE.
2.
3. 76 halt
4. 3C inc a

5. The next example is a bit more difficult. The following code
6.
7. 76 halt
8. FA 34 12 ld a,(1234)

is effectively executed as

 76 halt
 FA FA 34 ld a,(34FA)
 12 ld (de),a

9. Finally an interesting side effect
10.

11. 76 halt
12. 76 halt

This combination hangs the cpu. The first HALT causes the second HALT to be
repeated, which therefore causes the following command (=itself) to be repeated -
again and again. Placing a NOP between the two halts would cause the NOP to be
repeated once, the second HALT wouldn't lock the cpu.

Below is suggested code for GameBoy programs:

 ; **** Main Game Loop ****
 Main:
 halt ; stop system clock
 ; return from halt when interrupted
 nop ; (See WARNING above.)

 ld a,(VblnkFlag)
 or a ; V-Blank interrupt ?
 jr z,Main ; No, some other interrupt

 xor a
 ld (VblnkFlag),a ; Clear V-Blank flag

 call Controls ; button inputs
 call Game ; game operation

 jr Main

 ; **** V-Blank Interrupt Routine ****
 Vblnk:
 push af
 push bc
 push de
 push hl

 call SpriteDma ; Do sprite updates

 ld a,1
 ld (VblnkFlag),a

 pop hl
 pop de
 pop bc
 pop af
 reti

Video
The main GameBoy screen buffer (background) consists of 256x256 pixels or 32x32 tiles

(8x8 pixels each). Only 160x144 pixels can be displayed on the screen. Registers SCROLLX
and SCROLLY hold the coordinates of background to be displayed in the left upper corner of
the screen. Background wraps around the screen (i.e. when part of it goes off the screen, it
appears on the opposite side.)

An area of VRAM known as Background Tile Map contains the numbers of tiles to be
displayed. It is organized as 32 rows of 32 bytes each. Each byte contains a number of a tile to
be displayed. Tile patterns are taken from the Tile Data Table located either at $8000-8FFF or
$8800-97FF. In the first case, patterns are numbered with unsigned numbers from 0 to 255
(i.e. pattern #0 lies at address $8000). In the second case, patterns have signed numbers from -
128 to 127 (i.e. pattern #0 lies at address $9000). The Tile Data Table address for the
background can be selected by setting the LCDC register.

There are two different Background Tile Maps. One is located from $9800-9Bff. The other
from $9C00-9FFF. Only one of these can be viewed at any one time. The currently displayed
background can be selected by setting the LCDC register.

Besides background, there is also a "window" overlaying the background. The window is not
scrollable i.e. it is always displayed starting from its left upper corner. The location of a
window on the screen can be adjusted via WNDPOSX and WNDPOSY registers. Screen
coordinates of the top left corner of a window are WNDPOSX-7, WNDPOSY. The tile
numbers for the window are stored in the Tile Data Table. None of the windows tiles are ever
transparent. Both the Background and the window share the same Tile Data Table.

Both background and window can be disabled or enabled separately via bits in the LCDC
register.

If the window is used and a scan line interrupt disables it (either by writing to LCDC or by
setting WX > 166) and a scan line interrupt a little later on enables it then the window will
resume appearing on the screen at the exact position of the window where it left off earlier.
This way, even if there are only 16 lines of useful graphics in the window, you could display
the first 8 lines at the top of the screen and the next 8 lines at the bottom if you wanted to do
so.

WX may be changed during a scan line interrupt (to either cause a graphic distortion effect or
to disable the window (WX > 166)) but changes to WY are not dynamic and won't be noticed
until the next screen redraw.

The tile images are stored in the Tile Pattern Tables. Each 8x8 image occupies 16 bytes,
where each 2 bytes represent a line:

 Tile: Image:

 .33333.. .33333.. -> 01111100 -> $7C
 22...22. 01111100 -> $7C
 11...11. 22...22. -> 00000000 -> $00

 2222222. <-- digits 11000110 -> $C6
 33...33. represent 11...11. -> 11000110 -> $C6
 22...22. color 00000000 -> $00
 11...11. numbers 2222222. -> 00000000 -> $00
 11111110 -> $FE
 33...33. -> 11000110 -> $C6
 11000110 -> $C6
 22...22. -> 00000000 -> $00
 11000110 -> $C6
 11...11. -> 11000110 -> $C6
 00000000 -> $00
 -> 00000000 -> $00
 00000000 -> $00
As it was said before, there are two Tile Pattern Tables at $8000-8FFF and at $8800-97FF.
The first one can be used for sprites, the background, and the window display. Its tiles are
numbered from 0 to 255. The second table can be used for the background and the window
display and its tiles are numbered from -128 to 127.

Sprites
GameBoy video controller can display up to 40 sprites either in 8x8 or in 8x16 pixels.
Because of a limitation of hardware, only ten sprites can be displayed per scan line. Sprite
patterns have the same format as tiles, but they are taken from the Sprite Pattern Table located
at $8000-8FFF and have unsigned numbering. Sprite attributes reside in the Sprite Attribute
Table (OAM - Object Attribute Memory) at $FE00-FE9F. OAM is divided into 40 4-byte
blocks each of which corresponds to a sprite.
In 8x16 sprite mode, the least significant bit of the sprite pattern number is ignored and treated
as 0.

When sprites with different x coordinate values overlap, the one with the smaller x coordinate
(closer to the left) will have priority and appear above any others.

When sprites with the same x coordinate values overlap, they have priority according to table
ordering. (i.e. $FE00 - highest, $FE04 - next highest, etc.)
Please note that Sprite X = 0, Y = 0 hides a sprite. To display a sprite use the following
formulas:

 SpriteScreenPositionX (Upper left corner of sprite) = SpriteX - 8
 SpriteScreenPositionY (Upper left corner of sprite) = SpriteY - 16
To display a sprite in the upper left corner of the screen set sprite X = 8, Y = 16.

Only 10 sprites can be displayed on any one line. When this limit is exceeded, the lower
priority sprites (priorities listed above) won't be displayed. To keep unused sprites from
affecting onscreen sprites set their Y coordinate to Y = 0 or Y >= 144 + 16. Just setting the X
coordinate to X = 0 or X >= 160 + 8 on a sprite will hide it but it will still affect other sprites
sharing the same lines.

Blocks have the following format:

Byte0 Y position on the screen

Byte1 X position on the screen

Byte2 Pattern number 0-255 (Unlike some tile numbers, sprite pattern numbers are
unsigned. LSB is ignored (treated as 0) in 8x16 mode.)

Byte3 Flags:
Bit7 Priority If this bit is set to 0, sprite is displayed on top of background &

window. If this bit is set to 1, then sprite will be hidden behind
colors 1, 2, and 3 of the background & window. (Sprite only
prevails over color 0 of BG & win.)

Bit6 Y flip Sprite pattern is flipped vertically if this bit is set to 1.

Bit5 X flip Sprite pattern is flipped horizontally if this bit is set to 1.

Bit4 Palette
number

Sprite colors are taken from OBJ1PAL if this bit is set to 1 and
from OBJ0PAL otherwise

Sprite RAM Bug
There is a flaw in the GameBoy hardware that causes trash to be written to OAM RAM if the
following commands are used while their 16-bit content is in the range of $FE00 to $FEFF:

 inc rp (rp = bc, de, or hl)
 dec rp

 ldi a, (hl)
 ldd a, (hl)

 ldi (hl), a
 ldd (hl), a
Only sprites 1 & 2 ($FE00 & $FE04) are not affected by these instructions.

Sound
There are two sound channels connected to the output terminals SO1 and SO2. There is also a
input terminal Vin connected to the cartridge. It can be routed to either of both output
terminals. GameBoy circuitry allows producing sound in four different ways:

o Quadrangular wave patterns with sweep and envelope functions
o Quadrangular wave patterns with envelope functions
o Voluntary wave patterns from wave RAM
o White noise with an envelope function

These four sounds can be controlled independantly and then mixed separately for each of the

output terminals. Sound registers may be set at all times while producing sound.
When setting the initial value of the envelope and restarting the length counter, set the initial
flag to 1 and initialize the data.

Under the following situations the Sound ON flag is reset and the sound output stops:

1. When the sound output is stopped by the length counter
2. When overflow occurs at the addition mode while sweep is operating at sound 1.

When the Sound OFF flag for sound 3 (bit 7 of NR30) is set at 0, the cancellation of the OFF
mode must be done by setting the sound OFF flag to 1. By initializing sound 3, it starts it's
function.
When the All Sound OFF flag (bit 7 of NR52) is set to 0, the mode registers for sounds 1, 2, 3,
and 4 are reset and the sound output stops.

NOTE: The setting of each sounds mode register must be done after the All Sound OFF
mode is cancelled. During the All Sound OFF mode, each sound mode register cannot be
set.

NOTE: During the all sound off mode, GB power consumption drops by 16% or more!
While your programs aren't using sound then set the all sound off flag to 0. It defaults to
1 on reset.

These tend to be the two most important equations in converting between Hertz and GB
frequency registers: (Sounds will have a 2.4% higher frequency on Super GB.)

 gb = 2048 - (131072 / Hz) Hz = 131072 / (2048 - gb)

Timer
Sometimes it's useful to have a timer that interrupts at regular intervals for routines that
require periodic or percise updates. The timer in the GameBoy has a selectable frequency of
4096, 16384, 65536, or 262144 Hertz. This frequency increments the Timer Counter (TIMA).
When it overflows, it generates an interrupt. It is then loaded with the contents of Timer
Modulo (TMA). The following are examples:

 ;This interval timer interrupts 4096 times per second

 ld a,-1
 ld ($FF06),a ;Set TMA to divide clock by 1
 ld a,4
 ld ($FF07),a ;Set clock to 4096 Hertz

 ;This interval timer interrupts 65536 times per second

 ld a,-4
 ld ($FF06),a ;Set TMA to divide clock by 4

 ld a,5
 ld ($FF07),a ;Set clock to 262144 Hertz

Serial I/O
The serial I/O port on the Gameboy is a very simple setup and is crude compared to standard
RS-232 (IBM-PC) or RS-485 (Macintosh) serial ports. There are no start or stop bits so the
programmer must be more creative when using this port.
During a transfer, a byte is shifted in at the same time that a byte is shifted out. The rate of the
shift is deter- mined by whether the clock source is internal or external. If internal, the bits are
shifted out at a rate of 8192Hz (122 microseconds) per bit. The most significant bit is shifted
in and out first.

When the internal clock is selected, it drives the clock pin on the game link port and it stays
high when not used. During a transfer it will go low eight times to clock in/out each bit.

A programmer initates a serial transfer by setting bit 7 of $FF02. This bit may be read and is
automatically set to 0 at the completion of transfer. After this bit is set, an interrupt will then
occur eight bit clocks later if the serial interrupt is enabled. If internal clock is selected and
serial interrupt is enabled, this interrupt occurs 122*8 microseconds later. If external clock is
selected and serial interrupt is enabled, an interrupt will occur eight bit clocks later.

Initiating a serial transfer with external clock will wait forever if no external clock is present.
This allows a certain amount of synchronization with each serial port.
The state of the last bit shifted out determines the state of the output line until another transfer
takes place.

If a serial transfer with internal clock is performed and no external GameBoy is present, a
value of $FF will be received in the transfer.
The following code causes $75 to be shifted out the serial port and a byte to be shifted into
$FF01:

 ld a,$75
 ld ($FF01),a
 ld a,$81
 ld ($FF02),a

Interrupt Procedure
The IME (interrupt master enable) flag is reset by DI and prohibits all interrupts. It is set by EI
and acknowledges the interrupt setting by the IE register.

1. When an interrupt is generated, the IF flag will be set
2. If the IME flag is set & the corresponding IE flag is set, the following 3 steps are

performed
3. Reset the IME flag and prevent all interrupts
4. The PC (program counter) is pushed onto the stack

5. Jump to the starting address of the interrupt

Resetting of the IF register, which was the cause of the interrupt, is done by hardware.

During the interrupt, pushing of registers to be used should be performed by the interrupt
routine.
Once the interrupt service is in progress, all the interrupts will be prohibited. However, if the
IME flag and the IE flag are controlled, a number of interrupt services can be made possible
by nesting.

Return from an interrupt routine can be performed by either RETI or RET instruction.
The RETI instruction enables interrupts after doing a return operation.

If a RET is used as the final instruction in an interrupt routine, interrupts will remain disabled
unless a EI was used in the interrupt routine or is used at a later time.
The interrupt will be acknowledged during opcode fetch period of each instruction.

Interrupt Descriptions
The following interrupts only occur if they have been enabled in the Interrupt Enable register
($FFFF) and if the interrupts have actually been enabled using the EI instruction.
V-Blank The V-Blank interrupt occurs ~59.7 times a second on a regular GB and

~61.1 times a second on a Super GB (SGB). This interrupt occurs at the
beginning of the V-Blank period. During this period video hardware is not
using video ram so it may be freely accessed. This period lasts approximately
1.1 milliseconds.

LCDC
Status

There are various reasons for this interrupt to occur as described by the
STAT register ($FF40). One very popular reason is to indicate to the user
when the video hardware is about to redraw a given LCD line. This can be
useful for dynamically controlling the SCX / SCY registers ($FF43 / $FF42)
to perform special video effects.

Timer
Overflow

This interrupt occurs when the TIMA register ($FF05) changes from $FF to
$00

Serial
Transfer
Completion

This interrupt occurs when a serial transfer has completed on the game link
port.

High-to-
Low
of P10-P13

This interrupt occurs on a transition of any of the keypad input lines from
high to low. Due to the fact that keypad "bounce"* is virtually always
present, software should expect this interrupt to occur one or more times for
every button press and one or more times for every button release.

Bounce tends to be a side effect of any button making or breaking a connection. During these
periods, it is very common for a small amount of oscillation between high & low states to take

place.

I/O Registers
FF00
 Name - P1
 Contents - Register for reading joy pad info and determining system
type. (R/W)

 Bit 7 - Not used
 Bit 6 - Not used
 Bit 5 - P15 out port
 Bit 4 - P14 out port
 Bit 3 - P13 in port
 Bit 2 - P12 in port
 Bit 1 - P11 in port
 Bit 0 - P10 in port

 This is the matrix layout for register $FF00:

 P14 P15
 | |
 P10-------O-Right----O-A
 | |
 P11-------O-Left-----O-B
 | |
 P12-------O-Up-------O-Select
 | |
 P13-------O-Down-----O-Start
 | |

 Example code:

 Game: Ms. Pacman
 Address: $3b1

 LD A, $20 <- bit 5 = $20
 LD ($FF00), A <- select P14 by setting it low
 LD A, ($FF00)
 LD A, ($FF00) <- wait a few cycles
 CPL <- complement A
 AND $0F <- get only first 4 bits
 SWAP A <- swap it
 LD B, A <- store A in B
 LD A, $10
 LD ($FF00), A <- select P15 by setting it low
 LD A, ($FF00)
 LD A, ($FF00)
 LD A, ($FF00)
 LD A, ($FF00)
 LD A, ($FF00)
 LD A, ($FF00) <- Wait a few MORE cycles
 CPL <- complement (invert)
 AND $0F <- get first 4 bits
 OR B <- put A and B together

 LD B, A <- store A in D
 LD A, ($FF8B) <- read old joy data from ram
 XOR B <- toggle w/current button bit
 AND B <- get current button bit back
 LD ($FF8C),A <- save in new Joydata storage
 LD A, B <- put original value in A
 LD ($FF8B), A <- store it as old joy data

 LD A, $30 <- deselect P14 and P15
 LD ($FF00), A <- RESET Joypad
 RET <- Return from Subroutine

The button values using the above method are such:
 $80 - Start $8 - Down
 $40 - Select $4 - Up
 $20 - B $2 - Left
 $10 - A $1 - Right

 Let's say we held down A, Start, and Up. The value returned in
accumulator A would
 be $94

FF01
 Name - SB
 Contents - Serial transfer data (R/W)
 8 Bits of data to be read/written

FF02
 Name - SC
 Contents - SIO control (R/W)

 Bit 7 - Transfer Start Flag
 0: Non transfer
 1: Start transfer

 Bit 0 - Shift Clock
 0: External Clock (500KHz Max.)
 1: Internal Clock (8192Hz)

 Transfer is initiated by setting the Transfer Start Flag.
This bit may be
 read and is automatically set to 0 at the end of Transfer.

 Transmitting and receiving serial data is done
simultaneously. The
 received data is automatically stored in SB.

FF04
 Name - DIV
 Contents - Divider Register (R/W)

 This register is incremented 16384 (~16779 on SGB) times a
second. Writing
 any value sets it to $00.

FF05
 Name - TIMA
 Contents - Timer counter (R/W)

 This timer is incremented by a clock frequency specified by
the TAC
 register ($FF07). The timer generates an interrupt when it
overflows.

FF06
 Name - TMA
 Contents - Timer Modulo (R/W)

 When the TIMA overflows, this data will be loaded.

FF07
 Name - TAC
 Contents - Timer Control (R/W)

 Bit 2 - Timer Stop
 0: Stop Timer
 1: Start Timer

 Bits 1+0 - Input Clock Select
 00: 4.096 KHz (~4.194 KHz SGB)
 01: 262.144 KHz (~268.4 KHz SGB)
 10: 65.536 KHz (~67.11 KHz SGB)
 11: 16.384 KHz (~16.78 KHz SGB)

FF0F
 Name - IF
 Contents - Interrupt Flag (R/W)

 Bit 4: Transition from High to Low of Pin number P10-P13
 Bit 3: Serial I/O transfer complete
 Bit 2: Timer Overflow
 Bit 1: LCDC (see STAT)
 Bit 0: V-Blank

 The priority and jump address for the above 5 interrupts are:

 Interrupt Priority Start Address

 V-Blank 1 $0040
 LCDC Status 2 $0048 - Modes 0, 1, 2
 LYC=LY coincide (selectable)
 Timer Overflow 3 $0050
 Serial Transfer 4 $0058 - when transfer is complete
 Hi-Lo of P10-P13 5 $0060

 * When more than 1 interrupts occur at the same time only the interrupt
with the
 highest priority can be acknowledged. When an interrupt is used a '0'
should be
 stored in the IF register before the IE register is set.

FF10
 Name - NR 10
 Contents - Sound Mode 1 register, Sweep register (R/W)

 Bit 6-4 - Sweep Time
 Bit 3 - Sweep Increase/Decrease
 0: Addition (frequency increases)
 1: Subtraction (frequency decreases)
 Bit 2-0 - Number of sweep shift (n: 0-7)

 Sweep Time: 000: sweep off - no freq change
 001: 7.8 ms (1/128Hz)
 010: 15.6 ms (2/128Hz)
 011: 23.4 ms (3/128Hz)
 100: 31.3 ms (4/128Hz)
 101: 39.1 ms (5/128Hz)
 110: 46.9 ms (6/128Hz)
 111: 54.7 ms (7/128Hz)

 The change of frequency (NR13,NR14) at each shift is
calculated by the
 following formula where X(0) is initial freq & X(t-1) is last
freq:

 X(t) = X(t-1) +/- X(t-1)/2^n

FF11
 Name - NR 11
 Contents - Sound Mode 1 register, Sound length/Wave pattern duty (R/W)

 Only Bits 7-6 can be read.

 Bit 7-6 - Wave Pattern Duty
 Bit 5-0 - Sound length data (t1: 0-63)

 Wave Duty: 00: 12.5% (_--------_--------_--------)
 01: 25% (__-------__-------__-------)
 10: 50% (____-----____-----____-----)
(default)
 11: 75% (______---______---______---)

 Sound Length = (64-t1)*(1/256) seconds
FF12
 Name - NR 12
 Contents - Sound Mode 1 register, Envelope (R/W)

 Bit 7-4 - Initial volume of envelope
 Bit 3 - Envelope UP/DOWN
 0: Attenuate
 1: Amplify
 Bit 2-0 - Number of envelope sweep (n: 0-7) (If zero, stop
envelope
 operation.)

 Initial volume of envelope is from 0 to $F. Zero being no
sound.

 Length of 1 step = n*(1/64) seconds

FF13
 Name - NR 13
 Contents - Sound Mode 1 register, Frequency lo (W)

 Lower 8 bits of 11 bit frequency (x). Next 3 bit are in NR 14
($FF14)

FF14
 Name - NR 14
 Contents - Sound Mode 1 register, Frequency hi (R/W)

 Only Bit 6 can be read.

 Bit 7 - Initial (when set, sound restarts)
 Bit 6 - Counter/consecutive selection
 Bit 2-0 - Frequency's higher 3 bits (x)

 Frequency = 4194304/(32*(2048-x)) Hz
 = 131072/(2048-x) Hz

 Counter/consecutive Selection

 0 = Regardless of the length data in NR11 sound can be
produced
 consecutively.
 1 = Sound is generated during the time period set by the
length data in
 NR11. After this period the sound 1 ON flag (bit 0 of
NR52) is reset.

FF16
 Name - NR 21
 Contents - Sound Mode 2 register, Sound Length; Wave Pattern Duty (R/W)

 Only bits 7-6 can be read.

 Bit 7-6 - Wave pattern duty
 Bit 5-0 - Sound length data (t1: 0-63)

 Wave Duty: 00: 12.5% (_--------_--------_--------)
 01: 25% (__-------__-------__-------)
 10: 50% (____-----____-----____-----)
(default)
 11: 75% (______---______---______---)

 Sound Length = (64-t1)*(1/256) seconds

FF17
 Name - NR 22
 Contents - Sound Mode 2 register, envelope (R/W)

 Bit 7-4 - Initial volume of envelope
 Bit 3 - Envelope UP/DOWN
 0: Attenuate

 1: Amplify
 Bit 2-0 - Number of envelope sweep (n: 0-7)
 (If zero, stop envelope operation.)

 Initial volume of envelope is from 0 to $F. Zero being no
sound.
 Length of 1 step = n*(1/64) seconds

FF18
 Name - NR 23
 Contents - Sound Mode 2 register, frequency lo data (W)

 Frequency's lower 8 bits of 11 bit data (x). Next 3 bits are
in NR 14
 ($FF19).

FF19
 Name - NR 24
 Contents - Sound Mode 2 register, frequency hi data (R/W)

 Only bit 6 can be read.

 Bit 7 - Initial (when set, sound restarts)
 Bit 6 - Counter/consecutive selection
 Bit 2-0 - Frequency's higher 3 bits (x)

 Frequency = 4194304/(32*(2048-x)) Hz
 = 131072/(2048-x) Hz

 Counter/consecutive Selection
 0 = Regardless of the length data in NR21 can be produced
consecutively.
 1 = Sound is generated during the time period the length
data in NR21.
 After this period the sound 2 ON flag (bit 1 of NR52) is
reset.

FF1A
 Name - NR 30
 Contents - Sound Mode 3 register, Sound on/off (R/W)

 Only bit 7 can be read

 Bit 7 - Sound OFF
 0: Sound 3 output stop
 1: Sound 3 output OK

FF1B
 Name - NR 31
 Contents - Sound Mode 3 register, sound length (R/W)

 Bit 7-0 - Sound length (t1: 0 - 255)

 Sound Length = (256-t1)*(1/2) seconds

FF1C

 Name - NR 32
 Contents - Sound Mode 3 register, Select output level (R/W)

 Only bits 6-5 can be read

 Bit 6-5 - Select output level
 00: Mute
 01: Produce Wave Pattern RAM Data as it is (4 bit
length)
 10: Produce Wave Pattern RAM data shifted once
 to the RIGHT (1/2) (4 bit length)
 11: Produce Wave Pattern RAM data shifted twice
 to the RIGHT (1/4) (4 bit length)

 * - Wave Pattern RAM is located from $FF30-$FF3f.

FF1D
 Name - NR 33
 Contents - Sound Mode 3 register, frequency's lower data (W)

 Lower 8 bits of an 11 bit frequency (x).

FF1E
 Name - NR 34
 Contents - Sound Mode 3 register, frequency's higher data (R/W)

 Only bit 6 can be read.

 Bit 7 - Initial (when set, sound restarts)
 Bit 6 - Counter/consecutive flag
 Bit 2-0 - Frequency's higher 3 bits (x).

 Frequency = 4194304/(64*(2048-x)) Hz
 = 65536/(2048-x) Hz

 Counter/consecutive Selection
 0 = Regardless of the length data in NR31 sound can be
produced consecutively.
 1 = Sound is generated during the time period set by the
length data in NR31.
 After this period the sound 3 ON flag (bit 2 of NR52) is
reset.

FF20
 Name - NR 41
 Contents - Sound Mode 4 register, sound length (R/W)

 Bit 5-0 - Sound length data (t1: 0-63)

 Sound Length = (64-t1)*(1/256) seconds

FF21
 Name - NR 42
 Contents - Sound Mode 4 register, envelope (R/W)

 Bit 7-4 - Initial volume of envelope

 Bit 3 - Envelope UP/DOWN
 0: Attenuate
 1: Amplify
 Bit 2-0 - Number of envelope sweep (n: 0-7)
 (If zero, stop envelope operation.)

 Initial volume of envelope is from 0 to $F. Zero being no
sound.
 Length of 1 step = n*(1/64) seconds

FF22
 Name - NR 43
 Contents - Sound Mode 4 register, polynomial counter (R/W)

 Bit 7-4 - Selection of the shift clock frequency of the
polynomial counter
 Bit 3 - Selection of the polynomial counter's step
 Bit 2-0 - Selection of the dividing ratio of frequencies

 Selection of the dividing ratio of frequencies:
 000: f * 1/2^3 * 2
 001: f * 1/2^3 * 1
 010: f * 1/2^3 * 1/2
 011: f * 1/2^3 * 1/3
 100: f * 1/2^3 * 1/4
 101: f * 1/2^3 * 1/5
 110: f * 1/2^3 * 1/6
 111: f * 1/2^3 * 1/7 f = 4.194304 Mhz

 Selection of the polynomial counter step:
 0: 15 steps
 1: 7 steps

 Selection of the shift clock frequency of the polynomial
counter:

 0000: dividing ratio of frequencies * 1/2
 0001: dividing ratio of frequencies * 1/2^2
 0010: dividing ratio of frequencies * 1/2^3
 0011: dividing ratio of frequencies * 1/2^4
 : :
 : :
 : :
 0101: dividing ratio of frequencies * 1/2^14
 1110: prohibited code
 1111: prohibited code

FF23
 Name - NR 44
 Contents - Sound Mode 4 register, counter/consecutive; inital (R/W)

 Only bit 6 can be read.

 Bit 7 - Initial (when set, sound restarts)
 Bit 6 - Counter/consecutive selection

 Counter/consecutive Selection
 0 = Regardless of the length data in NR41 sound can be
produced consecutively.
 1 = Sound is generated during the time period set by the
length data in NR41.
 After this period the sound 4 ON flag (bit 3 of NR52) is
reset.

FF24
 Name - NR 50
 Contents - Channel control / ON-OFF / Volume (R/W)

 Bit 7 - Vin->SO2 ON/OFF
 Bit 6-4 - SO2 output level (volume) (# 0-7)
 Bit 3 - Vin->SO1 ON/OFF
 Bit 2-0 - SO1 output level (volume) (# 0-7)

 Vin->SO1 (Vin->SO2)

 By synthesizing the sound from sound 1 through 4, the voice
input from Vin
 terminal is put out.
 0: no output
 1: output OK

FF25
 Name - NR 51
 Contents - Selection of Sound output terminal (R/W)

 Bit 7 - Output sound 4 to SO2 terminal
 Bit 6 - Output sound 3 to SO2 terminal
 Bit 5 - Output sound 2 to SO2 terminal
 Bit 4 - Output sound 1 to SO2 terminal
 Bit 3 - Output sound 4 to SO1 terminal
 Bit 2 - Output sound 3 to SO1 terminal
 Bit 1 - Output sound 2 to SO1 terminal
 Bit 0 - Output sound 1 to SO1 terminal

FF26
 Name - NR 52 (Value at reset: $F1-GB, $F0-SGB)
 Contents - Sound on/off (R/W)

 Bit 7 - All sound on/off
 0: stop all sound circuits
 1: operate all sound circuits
 Bit 3 - Sound 4 ON flag
 Bit 2 - Sound 3 ON flag
 Bit 1 - Sound 2 ON flag
 Bit 0 - Sound 1 ON flag

 Bits 0 - 3 of this register are meant to be status bits to
be read.
 Writing to these bits does NOT enable/disable sound.

 If your GB programs don't use sound then write $00 to this
register to

 save 16% or more on GB power consumption.

FF30 - FF3F
 Name - Wave Pattern RAM
 Contents - Waveform storage for arbitrary sound data

 This storage area holds 32 4-bit samples that are played back
upper 4 bits
 first.

FF40
 Name - LCDC (value $91 at reset)
 Contents - LCD Control (R/W)

 Bit 7 - LCD Control Operation *
 0: Stop completely (no picture on screen)
 1: operation

 Bit 6 - Window Tile Map Display Select
 0: $9800-$9BFF
 1: $9C00-$9FFF

 Bit 5 - Window Display
 0: off
 1: on

 Bit 4 - BG & Window Tile Data Select
 0: $8800-$97FF
 1: $8000-$8FFF <- Same area as OBJ

 Bit 3 - BG Tile Map Display Select
 0: $9800-$9BFF
 1: $9C00-$9FFF

 Bit 2 - OBJ (Sprite) Size
 0: 8*8
 1: 8*16 (width*height)

 Bit 1 - OBJ (Sprite) Display
 0: off
 1: on

 Bit 0 - BG Display
 0: off
 1: on

 * - Stopping LCD operation (bit 7 from 1 to 0) must be performed
during V-blank
 to work properly. V-blank can be confirmed when the value of LY
is greater
 than or equal to 144.

FF41
 Name - STAT
 Contents - LCDC Status (R/W)

 Bits 6-3 - Interrupt Selection By LCDC Status

 Bit 6 - LYC=LY Coincidence (Selectable)
 Bit 5 - Mode 10
 Bit 4 - Mode 01
 Bit 3 - Mode 00
 0: Non Selection
 1: Selection

 Bit 2 - Coincidence Flag
 0: LYC not equal to LCDC LY
 1: LYC = LCDC LY

 Bit 1-0 - Mode Flag
 00: During H-Blank
 01: During V-Blank
 10: During Searching OAM-RAM
 11: During Transfering Data to LCD Driver

 STAT shows the current status of the LCD controller.
 Mode 00: When the flag is 00 it is the H-Blank period and the CPU can
access the display RAM
 ($8000-$9FFF).

 Mode 01: When the flag is 01 it is the V-Blank period and the CPU can
access the display RAM
 ($8000-$9FFF).

 Mode 10: When the flag is 10 then the OAM is being used ($FE00-$FE9F).
The CPU cannot access
 the OAM during this period

 Mode 11: When the flag is 11 both the OAM and display RAM are being
used. The CPU cannot
 access either during this period.

 The following are typical when the display is enabled:

Mode 0 000___000___000___000___000___000___000________________
Mode 1 _______________________________________11111111111111__
Mode 2 ___2_____2_____2_____2_____2_____2___________________2_
Mode 3 ____33____33____33____33____33____33__________________3

 The Mode Flag goes through the values 0, 2, and 3 at a cycle of about
109uS. 0 is
 present about 48.6uS, 2 about 19uS, and 3 about 41uS. This is
interrupted every
 16.6ms by the VBlank (1). The mode flag stays set at 1 for about 1.08
ms. (Mode 0
 is present between 201-207 clks, 2 about 77-83 clks, and 3 about 169-
175 clks. A
 complete cycle through these states takes 456 clks. VBlank lasts 4560
clks. A
 complete screen refresh occurs every 70224 clks.)

FF42
 Name - SCY
 Contents - Scroll Y (R/W)

 8 Bit value $00-$FF to scroll BG Y screen position.

FF43
 Name - SCX
 Contents - Scroll X (R/W)

 8 Bit value $00-$FF to scroll BG X screen position.

FF44
 Name - LY
 Contents - LCDC Y-Coordinate (R)

 The LY indicates the vertical line to which the present data is
transferred
 to the LCD Driver. The LY can take on any value between 0
through 153. The
 values between 144 and 153 indicate the V-Blank period. Writing
will reset
 the counter.

FF45
 Name - LYC
 Contents - LY Compare (R/W)

 The LYC compares itself with the LY. If the values are the same
it causes
 the STAT to set the coincident flag.

FF46
 Name - DMA
 Contents - DMA Transfer and Start Address (W)

 The DMA Transfer (40*28 bit) from internal ROM or RAM ($0000-$F19F) to
the OAM
 (address $FE00-$FE9F) can be performed. It takes 160 microseconds for
the transfer.

 40*28 bit = #140 or #$8C. As you can see, it only transfers $8C bytes
of data. OAM
 data is $A0 bytes long, from $0-$9F.

 But if you examine the OAM data you see that 4 bits are not in use.

 40*32 bit = #$A0, but since 4 bits for each OAM is not used it's 40*28
bit.

 It transfers all the OAM data to OAM RAM.

 The DMA transfer start address can be designated every $100 from address
$0000-$F100.
 That means $0000, $0100, $0200, $0300....

 As can be seen by looking at register $FF41 Sprite RAM ($FE00 - $FE9F)
is not always
 available. A simple routine that many games use to write data to Sprite
memory is
 shown below. Since it copies data to the sprite RAM at the appro- priate
times it
 removes that responsibility from the main program.
 All of the memory space, except high ram ($FF80-$FFFE), is not
accessible during DMA.
 Because of this, the routine below must be copied & executed in high
ram. It is
 usually called from a V-blank Interrupt.

 Example program:

 org $40
 jp VBlank

 org $ff80
VBlank:
 push af <- Save A reg & flags
 ld a, BASE_ADRS <- transfer data from BASE_ADRS
 ld ($ff46), a <- put A into DMA registers
 ld a, 28h <- loop length
Wait: <- We need to wait 160 microseconds.
 dec a <- 4 cycles - decrease A by 1
 jr nz, Wait <- 12 cycles - branch if Not Zero to Wait
 pop af <- Restore A reg & flags
 reti <- Return from interrupt

FF47
 Name - BGP
 Contents - BG & Window Palette Data (R/W)

 Bit 7-6 - Data for Dot Data 11 (Normally darkest color)
 Bit 5-4 - Data for Dot Data 10
 Bit 3-2 - Data for Dot Data 01
 Bit 1-0 - Data for Dot Data 00 (Normally lightest color)

 This selects the shade of grays to use for the background
(BG) & window
 pixels. Since each pixel uses 2 bits, the corresponding shade
will be
 selected from here.

FF48
 Name - OBP0
 Contents - Object Palette 0 Data (R/W)

 This selects the colors for sprite palette 0. It works
exactly as BGP
 ($FF47) except each each value of 0 is transparent.

FF49

 Name - OBP1
 Contents - Object Palette 1 Data (R/W)

 This Selects the colors for sprite palette 1. It works
exactly as OBP0
 ($FF48). See BGP for details.

FF4A
 Name - WY
 Contents - Window Y Position (R/W)

 0 <= WY <= 143

 WY must be greater than or equal to 0 and must be less than
or equal to
 143 for window to be visible.

FF4B
 Name - WX
 Contents - Window X Position (R/W)

 0 <= WX <= 166

 WX must be greater than or equal to 0 and must be less than
or equal to
 166 for window to be visible.

 WX is offset from absolute screen coordinates by 7. Setting
the window to
 WX=7, WY=0 will put the upper left corner of the window at
absolute screen
 coordinates 0,0.

 Lets say WY = 70 and WX = 87. The window would be positioned
as so:

 0 80 159

 0 | |
 | | |
 | |
 | Background Display |
 | Here |
 | |
 | |
 70 | - +------------------|
 | | 80,70 |
 | | |
 | | Window Display |
 | | Here |
 | | |
 | | |
 143 |___________________|__________________|

 OBJ Characters (Sprites) can still enter the window. None of the

window colors
 are transparent so any background tiles under the window are
hidden.

FFFF
 Name - IE
 Contents - Interrupt Enable (R/W)

 Bit 4: Transition from High to Low of Pin
 number P10-P13.
 Bit 3: Serial I/O transfer complete
 Bit 2: Timer Overflow
 Bit 1: LCDC (see STAT)
 Bit 0: V-Blank

 0: disable
 1: enable

This topic is one I grabbed off the internet. It is a method to have the link port talk in a way
that modern computers can understand it. I.e. at RS 232 levels and at 9600 bps. I did not
design this project, nor did I code it. I show it to have a look at some GameBoy source code.

Download the sources here.

The sourcecode
;***********************************
;* RS232 9600,n,8,1 *
;* *
;* through serial port *
;* *
;* Ken Kaarvik May21/99 *
;* *
;***********************************

;Talk to a RS232 device at 9800,n,8,1
;
;Pin outs - wire through a MAX-232
;
;CGB MAX-232 9pin serial
; port on computer
; +5V-----------+---+
; | |
; 16 =
; | |+
; | |
; |~~~~~~~~|
; | 16 2 |
; | |
;< Pin 4------|12 13|------3 <
;> Sout-------|11 14|------2 >
; | |
; +--|4 1|--+
; +| | | |+
; = | | =
; | | | |

http://verhoeven272.nl/fruttenboel/Gameboy/rs232.zip

; +--|5 3|--+
; | |
; |__15__6_|
; | |
; | =
; | |+
; gnd-----------+---+--------5
;
; (4) caps @10uF Note polarity
;

display_col equ $9800
blank equ 16
text_line equ $9800+$20*5

 SECTION "Org $0", HOME
 ret

; Button Push Interrupt - For sending out data while waiting for input

 SECTION "Org $60",HOME[$60]

 push af
 call pad_Read
 call send_test
 xor a
 ldh [$00],a
 pop af
 reti

 INCLUDE "hardware.inc"
 INCLUDE "ibmpc1.inc"

 SECTION "Header",HOME[$0100]

 nop
 jp Startup

 DB
 $CE,$ED,$66,$66,$CC,$0D,$00,$0B,$03,$73,$00,$83,$00,$0C,$00,$0D
 DB
 $00,$08,$11,$1F,$88,$89,$00,$0E,$DC,$CC,$6E,$E6,$DD,$DD,$D9,$99
 DB
 $BB,$BB,$67,$63,$6E,$0E,$EC,$CC,$DD,$DC,$99,$9F,$BB,$B9,$33,$3E

 ;0123456789ABCDE
 DB "RS232 "
 DB $80 ; $80=Color GB
 DB 0,0,0 ; SuperGameboy
 DB 0 ; CARTTYPE
 ; --------
 ; 0 - ROM ONLY
 ; 1 - ROM+MBC1
 ; 2 - ROM+MBC1+RAM
 ; 3 - ROM+MBC1+RAM+BATTERY

 ; 5 - ROM+MBC2
 ; 6 - ROM+MBC2+BATTERY

 DB 0 ; ROMSIZE
 ; -------
 ; 0 - 256 kBit (32 kByte, 2 banks)
 ; 1 - 512 kBit (64 kByte, 4 banks)
 ; 2 - 1 MBit (128 kByte, 8 banks)
 ; 3 - 2 MBit (256 kByte, 16 banks)
 ; 3 - 4 MBit (512 kByte, 32 banks)

 DB 0 ; RAMSIZE
 ; -------
 ; 0 - NONE
 ; 1 - 16 kBit (2 kByte, 1 bank)
 ; 2 - 64 kBit (8 kByte, 1 bank)
 ; 3 - 256 kBit (32 kByte, 4 banks)

 DW $0000 ; Manufacturer

 DB 0 ; Version
 DB 0 ; Complement check
 DW 0 ; Checksum

 INCLUDE "memory1.asm"
 INCLUDE "keypad.asm"

 SECTION "Main",home[$0150]

Startup
 call initialize

Main
 call inc_counter
 call read_rs232
 call wait_vb
 call write_to_screen
 jp Main

send_test
 ld a,[_PadDataEdge] ; _PadData]
 cp 0
 ret z

 cp PADF_A
 jp z, service_button_a

 cp PADF_B
 jp z, service_button_b

 cp PADF_START
 jp z, service_start

 cp PADF_SELECT
 jp z, service_select

 cp PADF_UP
 jp z, service_up

 cp PADF_DOWN
 jp z, service_down

 cp PADF_LEFT
 jp z, service_left

 cp PADF_RIGHT
 jp z, service_right
 ret

service_button_a
 ld hl, a_button_text
 call send_text
 ret

service_button_b
 ld hl, b_button_text
 call send_text
 ret

service_start
 ld hl, start_text
 call send_text
 ret

service_select
 ld hl, select_text
 call send_text
 ret

service_up
 ld hl, up_text
 call send_text
 ret

service_down
 ld hl, down_text
 call send_text
 ret

service_left
 ld hl, left_text
 call send_text
 ret
service_right
 ld hl, right_text
 call send_text
 ret

send_text
 ld a, [hl+]
 cp $80
 ret z

 ld b, a
 call send_rs232
 jp send_text

a_button_text
 db "You pressed the A button ", $80

b_button_text
 db "Hello world I pressed B ", $80

start_text
 db "Start ", $80

select_text
 db "Select ",$80

up_text
 db "Up ", $80

down_text
 db "Down ", $80

left_text
 db "Left ", $80

right_text
 db "Right ", $80

title_text
 db "RS232 send & receive"

clear_ram
 ld a, blank
 ld hl, raw_data
 ld bc, 36
 call mem_Set
 ret

read_rs232 ; read in byte at pin4
 ld b, $80 ; $01
 ei

wait_for_start_bit
 ldh a, [$56]
 bit 4, a
 jp nz, wait_for_start_bit
 di
 call delay_130us

read_next_bit
 ldh a, [$56]
 swap a
 rr a ; put pin 4 into carry
 rr b
 jp c, wait_for_stop_bit

 call delay_104us
 jp read_next_bit

wait_for_stop_bit
 call delay_104us
 call delay_104us

wait_for_after_stop_bit
 ld a, b
 ld [raw_data], a
 ret

send_rs232 ; send byte in B out Sout
 ld e, 8
 ld a, 0 ; send start bit
 ldh [$01], a
 ld a, $83
 ldh [$02], a
 call delay_104us_send

send_next_bit
 rr b
 ld a, 0
 jp nc, keep_it_zero
 ld a, $FF

keep_it_zero
 ldh [$01], a
 ld a, $83
 ldh [$02], a
 call delay_104us_send
 dec e
 jp nz, send_next_bit

 ld a, $FF ; send stop bit
 ldh [$01], a
 ld a, $83
 ldh [$02], a
 call delay_104us_send
 ret

delay_130us
 ld d, 23
d130 dec d
 jp nz, d130
 ret

delay_104us
 ld d, 17
d104 dec d
 jp nz, d104
 ret

delay_104us_send
 ld d, 16

d104s dec d
 jp nz, d104s
 ret

inc_counter
 ld a, [counter]
 inc a
 ld [counter], a
 ret

write_to_screen
 call shift_display_left
 ld a, [raw_data]
 ld hl, text_line+19
 call display_char

 ld de, counter
 ld hl, display_col+$20*3
 call display_byte
 ret

shift_display_left
 ld hl, text_line+1
 ld de, text_line
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+2
 ld de, text_line+1
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+3
 ld de, text_line+2
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+4
 ld de, text_line+3
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+5
 ld de, text_line+4
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+6
 ld de, text_line+5
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+7
 ld de, text_line+6
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+8
 ld de, text_line+7
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+9
 ld de, text_line+8
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+10
 ld de, text_line+9
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+11
 ld de, text_line+10
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+12
 ld de, text_line+11
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+13
 ld de, text_line+12
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+14
 ld de, text_line+13
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+15
 ld de, text_line+14
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+16
 ld de, text_line+15
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+17
 ld de, text_line+16
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+18
 ld de, text_line+17
 ld bc, 1
 call mem_CopyVRAM

 ld hl, text_line+19
 ld de, text_line+18
 ld bc, 1
 call mem_CopyVRAM

 ret

display_byte ; enter with value in [de]
 lcd_WaitVRAM
 ld a, [de]
 ld b, a
 and $F0
 swap a
 ld [hl+], a
 lcd_WaitVRAM
 ld a, b
 and $0F
 ld [hl], a
 ret

display_char
 bit 7, a ;don't look up non print chars
 ret nz

 add a, 20 ;add imb char offset
 push af
 lcd_WaitVRAM
 pop af
 ld [hl], a
 ret

initialize
 di
.wait ldh a, [$44] ; LY LCDC compare
 cp 144
 jr nc, .wait
 ld a, 0
 ldh [$40], a ; LCDC lcd control

 ld a, %10000000
 ldh [$68], a ; BCPS
 ld a, %00000000 ; palette 0 0 bg
 ldh [$69], a ; BCPD
 ld a,%00000000
 ldh [$69],a

 ld a, %11111110 ; palette 0 1
 ldh [$69], a
 ld a, %00011110
 ldh [$69], a

 ld a, %11111111 ; palette 0 2 fg test font
 ldh [$69], a
 ld a, %01111111
 ldh [$69], a

 ld a, %11111111 ; palette 0 3 fg ibm font
 ldh [$69], a
 ld a, %01111111
 ldh [$69], a

 ;ld a, %00000000 ; palette 1 0 bg
 ;ldh [$69], a
 ;ld a, %00000000
 ;ldh [$69], a

 ld hl, Font ; load my test Font
 ld de, $8000
 ld bc, 20*8*2
 call mem_Copy

 ld hl, ibm_characters ; load ibm font
 ld de, $8000+20*8*2 ; $8140
 ld bc, 8*128
 call mem_CopyMono

 ld a, 16 ; blank char
 ld hl, $9800
 ld bc, 20*32*32
 call mem_Set

 ld a, 0
 ldh [$42], a ; SCY Scroll Y
 ldh [$43], a ; SCX Scroll X

 ld a, %00000011
 ldh [$47], a ; BGP

 ld a, $00000000
 ldh [$FF], a ; IE

 ld hl, title_text
 ld de, $9800
 ld bc, 20
 call mem_Copy_offset

 ld a, %10010001
 ldh [$40], a

 xor a
 ld [$FF24], a
 xor a
 ld [counter], a

 ld a, %11000000
 ldh [$56], a

 ld a, $FF ; send stop bit
 ldh [$01], a
 ld a, $83
 ldh [$02], a

 ld a, IEF_HILO
 ldh [rIE], a

 ret

wait_vb
 ldh a, [$44]
 cp 144
 jp nz, wait_vb
 ret

mem_Copy_offset::
 inc b
 inc c
 jr .skip
.loop ld a, [hl+]
 add a, 20 ; my offset hack
 ld [de], a
 inc de
.skip dec c
 jr nz, .loop
 dec b
 jr nz, .loop
 ret

ibm_characters
 chr_IBMPC1 1,8

Font:
 DW `01111100
 DW `10000010
 DW `10000010
 DW `10000010
 DW `10000010
 DW `10000010
 DW `01111100
 DW `00000000

 DW `00010000
 DW `00110000
 DW `00010000
 DW `00010000
 DW `00010000
 DW `00010000
 DW `00111000
 DW `00000000

 DW `01111100
 DW `10000010
 DW `00000010
 DW `01111100
 DW `10000000
 DW `10000000
 DW `11111110
 DW `00000000

 DW `01111100
 DW `10000010
 DW `00000010
 DW `00011100
 DW `00000010
 DW `10000010
 DW `01111100
 DW `00000000

 DW `00001100
 DW `00010100
 DW `00100100
 DW `01000100
 DW `11111110
 DW `00000100
 DW `00000100
 DW `00000000

 DW `11111110
 DW `10000000
 DW `10000000
 DW `11111100
 DW `00000010
 DW `00000010
 DW `11111100
 DW `00000000

 DW `01111100
 DW `10000000
 DW `10000000
 DW `11111100
 DW `10000010
 DW `10000010
 DW `01111100
 DW `00000000

 DW `11111110
 DW `00000010
 DW `00000100
 DW `00001000
 DW `00010000
 DW `00010000
 DW `00010000
 DW `00000000

 DW `01111100
 DW `10000010
 DW `10000010
 DW `01111100
 DW `10000010
 DW `10000010
 DW `01111100
 DW `00000000

 DW `01111100
 DW `10000010

 DW `10000010
 DW `01111110
 DW `00000010
 DW `00000010
 DW `01111100
 DW `00000000

 DW `00111000
 DW `01000100
 DW `10000010
 DW `11111110
 DW `10000010
 DW `10000010
 DW `10000010
 DW `00000000

 DW `11111100
 DW `10000010
 DW `10000010
 DW `11111100
 DW `10000010
 DW `10000010
 DW `11111100
 DW `00000000

 DW `00111100
 DW `01000010
 DW `10000000
 DW `10000000
 DW `10000000
 DW `01000010
 DW `00111100
 DW `00000000

 DW `11111000
 DW `10000100
 DW `10000010
 DW `10000010
 DW `10000010
 DW `10000100
 DW `11111000
 DW `00000000

 DW `11111110
 DW `10000000
 DW `10000000
 DW `11111000
 DW `10000000
 DW `10000000
 DW `11111110
 DW `00000000

 DW `11111110
 DW `10000000
 DW `10000000
 DW `11111000

 DW `10000000
 DW `10000000
 DW `10000000
 DW `00000000

 DW `00000000 ;16
 DW `00000000
 DW `00000000
 DW `00000000
 DW `00000000
 DW `00000000
 DW `00000000
 DW `00000000

 DW `11111111 ;17 web mark
 DW `10000001
 DW `00000000
 DW `00000000
 DW `00000000
 DW `00000000
 DW `00000000
 DW `00000000

 DW `00000000 ;18 web space
 DW `00000000
 DW `00000000
 DW `00000000
 DW `00000000
 DW `10000001
 DW `11111111
 DW `00000000

 DW `11111100 ;19
 DW `10000010 ;P for parity
 DW `10000010
 DW `11111100
 DW `10000000
 DW `10000000
 DW `10000000
 DW `00000000

 SECTION "GB_ram",BSS
counter DS 1
raw_data DS 1

Overview of the Gameboy Color hardware.
Just like "GNU's Not Unix", it also applies that the Gameboy Color is not the traditional
Gameboy. And this topic is solely about the GBC (Gameboy Color). So I'm digging through
the documents known to me to extract the essentials that apply to the GBC only.

In another chapter, I presented a circuit layout but that was not for the GBC. The GBC has a
130 pin IC as CPU, and the GB and GBP have an 80 pin device.

Technical data

CPU 8 bit 8085 derivative

Speed 4.2 MHz (normal mode)
8.4 MHz (fast mode)

Work RAM 32 KB

Video RAM 16 KB

Link ports Wired, synchronous
Optical

Screen size 66 mm diagonal

Resolution 160 x 144 pixels

Colours 32768

Energy 3 Volts at less than 100 mA

Memory map
The processor of the Gameboy lacks all I/O instructions so everything is memory mapped.
Which makes things a little bit more complicated than with straight Z80 designs. Still, for
small applications, it's no big deal to assign part of the memory map to I/O space. Below is the
memory map for the GBC:

 0000 +-----------+
 | | 16 KB ROM, bank 0, fixed
 | | address range = [0000 .. 3FFF]
 4000 +-----------+
 | | 16 KB ROM, bank 1 to n, swapped in and out by an
MBC
 | | address range = [4000 .. 7FFF]
 8000 +-----------+
 | | 8 KB video RAM, two banks, switchable by CPU
 | | address range = [8000 .. 9FFF]
 A000 +-----------+
 | | 8 KB external RAM, inside the cart, if any is
present
 | | The MBC must take care of possible bankswitching
 | | address range = [A000 .. BFFF]
 C000 +-----------+
 | | 4 KB work RAM (bank 0)
 | | address range = [C000 .. CFFF]
 D000 +-----------+
 | | 4 KB work RAM (bank 1..7)
 | | address range = [D000 .. DFFF]
 E000 +-----------+
 | | Mirror of address range [C000 .. DDFF]
 | | Better not to be used
 FE00 +-----------+
 | | Sprite attribute table
 FEA0 +-----------|
 | | Do not use address range [FEA0 .. FEFF]
 FF00 +-----------+

 | | GBC system I/O ports
 | | address range [FF00 .. FF7F]
 FF80 +-----------+
 | | High RAM
 | | address range [FF80 .. FFFE]
 FFFF +-----------+
 | | Interupt Enable register
 | | address range [FFFF]
 0000 +-----------+
The address range consists of the addresses that are possible in that section of memory. The
first number is the first possible address and the second number (the one after the two dots) is
the LAST address of that range. It is INCLUSIVE. People aquainted with Modula-2 will be
familiar with this notation.

CPU registers and flags
As opposed to a real Z80, the GBC CPU does not contain the IX, IY registers and also the
auxilliary registerbank is missing. Which made a friend of mine conclude that it in fact was an
8085, but programmed with Zilog mnemonics. And since he writes assemblers for a hobby, I
guess he's right. Check it all out at his website SB Projects.
Register Purpose Combines with to form

A Accumulator F AF

F Status flags A AF

B GP register C BC

C Counter B BC

D GP register E DE

E GP register D DE

H Pointer L HL

L Pointer H HL

SP Stackpointer None N/A

PC Instruction pointer None N/A

The F register has only four flags, of which two have meaning for technical programmers. As
can be seen here:

Flag Bit
position Shows

Z 7 The ZERO flag indicates if the most recent operation
resulted in a zero result in the accumulator (A register). If
the Z flag is "1", the result was "0"...

C 6 This bit reflects the state of the CARRY flag after the

http://www.sbprojects.com/

most recent operation that involved it.

H 5 The HALF CARRY flag is used in BCD arithmetic,
which is not quite usefull for engineers.

N 4 The N flag is also BCD related.

The remaining bits [0 .. 3] are always set to "0".

"Missing" Z80 instructions
If the Gameboy CPU is a stripped Z-80 processor, the following instructions have been
removed. If, on the other hand, the GBC CPU is a souped up 8085, the situation is different.
Opcode Explanation

08 EX AF, AF'

10 DJNZ PC + offset

22 LD (nn), HL

2A LD HL, (nn)

32 LD (nn), A

3A LD A, (nn)

CB3x SRL reg

D3 OUT (n), A

D9 EXX

DB IN A, (n)

DD group This is a group of instructions whose first byte is the 0DDh value.
This is typical for instructions involving the IX registerpair. Since
the GBC CPU does not have an IX register, these instructions are
meaningless.

E0 RET PO

E2 JP PO, nn

E3 EX (SP), HL

E4 CALL PO, nn

E8 RET PE

EA JP PE, nn

EB EX DE, HL

EC CALL PE, nn

ED group This is a group of instructions whose first byte is the 0EDh value.
The involved instructions are:

 ADC HL, rp SBC
HL, rp
 IN reg, (C) OUT
reg, (C)
 NEG IMx
 RETI RETN
 CPI CPIR
 CPD CPDR
 IND INDR
 INI INIR
 LDD LDDR
 LDI LDIR
 OUTI OTIR
 OUTD OUTDR
 RLD RRD
 LD A, R LD R,
A
 LD I, A LD A,
I
 LD rp, (addr) LD
(addr), BC
 LD (addr), DE LD
(addr), HL

F0 RET P

F2 JP P, nn

F4 JP P, nn

F8 RET M

FA JP M, nn

FC CALL M, nn

FD group This is a group of instructions whose first byte is the 0FDh value.
This is typical for instructions involving the IY registerpair. Since
the GBC CPU does not have an IY register, these instructions are
meaningless.

"Extra" instructions of the Gameboy CPU.
Apart from removing Z80 instructions from the Z80 (if Nintendo started out with a Z80
anyway, which is not so sure at all) some instructions were added as well. The following table
shows these instructions with their opcodes:

Opcode Instruction Explanation

08 LD (nn), SP Memory (nn) := SP

10 STOP Stop oscillator and put
CPU in powersave mode

22 LDI (HL), A Memory (HL) := A;
HL := HL + 1

2A LDI A, (HL) A := Memory (HL);
HL := HL + 1

32 LDD (HL), A Memory (HL) := A;
HL := HL - 1

3A LDD A, (HL) A := Memory (HL);
HL := HL - 1

D9 RETI Return from interrupt.
This is the last instruction
from interrupt service
routines.

E0 LD (FF00 + n), A Address := FF00 + n;
Memory (Address) := A

E2 LD (FF00 + C), A Address := FF00 +
Register (C);
Memory (Address) := A

E8 ADD SP, nn SP := SP + nn
nn = [-128 .. 127]

EA LD (nn), A Memory (nn) := A

F0 LD A, (FF00 + n) A := Memory (FF00 + n)

F2 LD A, (FF00 + C) A := Memory (FF00 + C
register)

F8 LD HL, SP + dd HL := SP + dd
dd = [-128 .. 127]

FA LD A, (nn) A := Memory (nn)

CB 3x SWAP loc Exchange the values of
the bitgroups [0..3] and
[4..7] within the location
'loc', which can be any 8
bit register or the 8 bits
addressed by the HL
registerpair.

CPU comparison.
It doesn't really matter, if the GBC CPU is a descendant from the Z80 or an evolution from the
8080. But it makes me curious. So I want to make a comparison between the four involved
CPU's: the Intel 8080, Intel 8085, Zilog Z80 and the Nintendo GBC. I will not compare the
pinouts since neither of these chips was designed to be drop in replacements for eachother.
Therefore I will use some kind of Kelvin scale. The Intel 8080 is zero Kelvin. It's the absolute
bottom of what can be achieved. The rest goes up.

The table below contains all instructions relative to the 8080.

Processor: 8085 Z-80 GBC CPU

Additions: RIM
SIM

JR disp
JR <cond>, disp
RLC reg
RRC reg
RL reg
RR reg
SLA reg
SRA reg
SRL reg
BIT reg
RES reg
SET reg
DJNZ disp
EX AF, AF'
EXX
ED prefix group
 35 extra
DD prefix group
 24 extra
FD prefix group
 24 extra

JR disp
JR <cond>, disp
RLC reg
RRC reg
RL reg
RR reg
SLA reg
SRA reg
SRL reg
BIT reg
RES reg
SET reg

I think this makes the case clear. The GMB CPU is definitely not a souped up 8080 or 8085. It
doesn't even come close. The table clearly shows that the GameBoy Color CPU is a somehwat
stripped Z80. Let this close the discussion. The GBC CPU is more related to the Z-80 (or one
of it's second sources) than to any Intel processor.
The GameBoy Advance

After the GameBoy Color
(GBC) there had to be a newer
and better GameBoy. Which
was to be the GameBoy
Advance. You can see one in
the picture on the left. The
GBA is a major improvement
over the GBC. I mention:

• Better display (smaller
pixels, more contrast)

• Amazing sound
• Two extra, large, keys

on the shoulders of the
case

• An ARM 7 RISC CPU at 17 MHz, capable of directly addressing 32 MB of memory
• Fully downward compatible with ALL previous GameBoys
• The ARM 7 die contains a full GBC processing chipset
• Lots of RAM on board
• Better handling during gameplay
• 32 bit deep colours

This machine packs a great punch in a small package. The GBA has the same edge connector
as the GBC. It has a full GBC chipset inside. In fact, the processor chip of the GBA consists
of the full Z80-style GBC processor plus the ARM 7 processor on one die.

Under the hood.

Inside, we see the same kind of filling like in the GBC: just about nothing!

In the center is the Central Processing Unit. It has the Z-80, the ARM-7 and the LCD
controller inside. To the left, we see the 4.2 MHz oscillator and to the right is the RAM chip.
That's it! The Gameboy does it all with three VLSI chips and an oscillator.

To the right, we see
the extension slot. It
is the same as the
one in all previous
GameBoy's. Power,
Ground, 8 data and
16 address lines.
Plus some control
lines. That's it. The
GBA will gladly
accept GameBoy
cartridges and run
with them as well.
The GBA senses the

kind of cart that is inserted and it will boot with the GBC processor if the cartridge is 'old
style'.

If you look carefully in the picture, you see a kind of slotted gap just above the 'U' of 'AGB-
CPU-02' on the PCB. This slot is there to accept the case of the cart and to align it with the
contact fingers.

Anyway, in the bottom section of the slot is a small tumbler switch. The old GB carts are
rectangular at the base. The new GBA carts have an indent there. So old carts push down the
tumbler switch and activate the Z-80 style processor in GBC mode. If the switch stays up, the
new ARM-7 CPU is booted.

You can witness this by looking at the display during a
boot. GBA carts present another logo than the older GBC
ones.
In the picture on the left, we see a closeup of the GBA cart-
slot. If you look carefully, you can see the small switch that
makes the difference

Using the GBA.

The GBA is wonderfull to
play with. All the GBC
games work 'out of the
box', although the colours
are quite different. The
only drawback is that the
pixels are smaller so the
height of the image is
smaller too. And there are
black bars to the left and
right of the playing field
since the GBA has 250
pixels where the GBC has
'only' 160.

If you press the left
shoulder button, the image is stretched to fill the screen horizontally. For some games (like V-
rally) this is nice, but Pokemon Pinball gets harder to play. Press the right shoulder button and
the image gets narrower again.

To the left we see the content of a GBA game cart. It is filled to the limit! They had to solder
the Lithium cell on top of one of the memory chips to get everything in.

Look at the exge connector: it's the same as the one used in the GBC. Still, the ARM CPU is
capable of addressing 32 MB of memory without an MBC unit. Apparently some kind of
address multiplexing is required. I wonder how they do it...

To the
right
we see
anothe
r GBA
cart.
This
one
has
less
crowd
ed
filling.
It has
only
two
integra
ted
circuit

s to do it all. No battery required and still it keeps high scores and personal data.

The PCB explains how it's done: there's a 512 KB Flash memory on board. Plus a huge
masked ROM. Judging the pincount (44) this must be a very large Read Only Memory. Or,
since the ROM's are mostly made by the company that uses the 'MX' brand, this mask ROM is
more than just a ROM. Below there is some evidence for this hypothesis.

Look at this
game cart.
The picture
is a bit
blurry, but
we see the
two
integrated
circuits. One
is the big
masked
ROM again
and the other
one is a
24LCxx
serial

EEPROM. This memory will keep the stored data when power is removed. But the serial
EEPROM is quite different to approach than a normal 'byte-wide' EEPROM. So some kind of
auxilliary processing power or at least some glue logic must be present to handle the parallel -
serial conversions. My guess is, that there is an MBC inside each 'Mask ROM' with the MX
brand on top. Or at least some kind of additional processor.

By James Moxham

 ZINT Z80 INTERPRETER

pyright 1996 James Moxham

apter 1 LD group of instructions

ontrol

 Co

Ch
Chapter 2 Exchange group

and PUSH Chapter 3 The stack, POP
Chapter 4 Arithmetic

 and returns Chapter 5 Jumps calls
Chapter 6 And or and xor

nd test Chapter 7 Bit set reset a
Chapter 8 Rotate and shift

c and cChapter 9 General arithmeti

Chapter 10 Block transfer and search
Chapter 11 Input and Output instructions
Chapter 12 Additional useful commands
Chapter 13 Number bases
Chapter 14 The flags

Appendix 1 Binary, hex ascii decimal TC conversion

 A,6

 This loads the A register with the number 6, so the register

 CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP

 You can transfer this data to other registers

 CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP

pies the data in the A register to the H register. In fact H

 data: Number bases

 As most programmers of BASIC will know numbers can be

 A,255 gives

 DE HL IX IY A' CZPSNH' BC' DE' HL' SP

 The H at the end signifies that the number is a hex number.

**

 CHAPTER 1 The LD instruction

 The LD instruction is perhaps the most useful instruction in
the Z80. It is used to transfer data between registers, and to
and from memory. The most simple type of LD instruction is to
fill a register with a number: (Use F1)

LD

display now appears as

A
06 000000 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

 H,A LD

A
06 000000 0000 0000 0600 0000 0000 00 000000 0000 0000 0000 0000

co
could have been any one of A B C D E H or L. The data in the A
register remaines unchanged.

 Transferring

represented in several forms, binary octal and hexadecimal being
common bases. The registers in the above example display the data
in hexadecimal form. Thus

LD

 CZPSNH BC A

FF 000000 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

 FF is 255 in hexadecimal. The equivalent statement using

hexadecimal directly is

 A,0FFH LD

The 0 at the front is necessary because the first digit in any
number should always be between 0 and 9.

 You can also use binary

 A,11111111B LD

 where the B at the end specifies the number is a binary

 The reason for using all three bases is because some

o other bases are supported, two's complement and direct ascii

 B,073H

 Double register LD's

 HL,1000 returns

 CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP

 can alse transfer this data from one double register pair to

 BC,HL gives

 DE HL IX IY A' CZPSNH' BC' DE' HL' SP

 Transfers to and from memory

 The above instructions all transfer data within the

 A,255:LD HL,1000:LD,(HL) A

 Here we are using more than one statement in a line. The

number.

instructions are much easier to understand in one base.

Tw
characters and are discussed in detail in ch16. The following
instructions all do the same thing.

LD
LD B,01110011B
LD B,65
LD B,"s"

 As you notice from the register display some registers have
been grouped together. For example the H and L registers are
displayed together as HL. You can treat these pairs as if they
were one

LD

A
00 000000 0000 0000 03E8 0000 0000 00 000000 0000 0000 0000 0000

We
another

LD

 CZPSNH BC A

00 000000 03E8 0000 03E8 0000 0000 00 000000 0000 0000 0000 0000

 The double registers can be any one of BC DE HL IX IY or SP.

microprocessor. The following sequence transfers a data to the
memory (Use F1 or write as a program and then type F5)

LD

first two statements load the registers as we have seen before.
The last statement loads memory location 1000 with 255. To
retrieve this data we can use

 D,(HL) LD

which transfers 255 from the memory to register D.

 see what is in the memory at any one time use the view

 general the memory location is usually given by the HL

xt the data is transferred

 (IX),72:LD (IX+1),69:LD (IX+2),76:LD (IX+3),76:LD (IX+4),79

e final way LD can be used is to transfer double registers to

 (500),BC

ansfers the contents of C to the memory location 500 and the

 DE,(500)

e register can be BC DE HL IX IY or SP.

e LD instructions

LD H,(IX+d)

To
memory command.

In
register pair. The BC and DE regsters can be used as the memory
location but the data can only be transferred to and from
register A eg LD (BC),A is allowed but LD B,(DE) is not.

A second way to transfer data to and from memory is to use a
number instead of a register pair. Thus

LD E,(38C1H) transfers to register E the data in memory 1000
LD (HL),34 transfers to the location stored in HL the no 34

A third way is to use the IX and IY registers. Say for example we
want to store the word HELLO in memory. First we would look up
the ASCII values for the letters, which are 72 69 76 76 79. We
will store the word starting at memory location 500. First we
load IX or IY with 500

LD IX,500

Ne

LD

e the view memory command to see where this data is. Us

Th
and from memory. For example

LD

tr
contents of B to location 501. We can load this data from memory
to register pair DE with a

LD

Th

at follows now is a list of all the possiblWh

sorted alphabetically. The letter n is used to indicate a number
between 0 and 255 (0 and 0FFH). nn represents a number between 0
and 65535 (0 and 0FFFFH). d is any number between -127 and +127
(the +d can be -d; LD (IX-23) A

 (BC),A LD B,(HL) LD

LD (DE),A LD B,(IX+d) LD H,(IY+d)
LD (HL),A LD B,(IY+d) LD H,A
LD (HL),B LD B,A LD H,B
LD (HL),C LD B,B LD H,C
LD (HL),D LD B,C LD H,D
LD (HL),E LD B,D LD H,E
LD (HL),H LD B,E LD H,H

LD (HL),L LD B,H LD H,L
LD (HL),n LD B,L LD H,n
LD (IX+d),A LD B,n LD HL,(nn)

n)

n)

n)

)

**

 CHAPTER 2 The EX instructions

ioned so far the

LD (IX+d),B LD BC,(nn) LD HL,nn
LD (IX+d),C LD BC,nn LD I,A
LD (IX+d),D LD C,(HL) LD IX,(n
LD (IX+d),E LD C,(IX+d) LD IX,nn
LD (IX+d),H LD C,(IY+d) LD IY,(nn)
LD (IX+d),L LD C,A LD IY,nn
LD (IX+d),n LD C,B LD L,(HL)
LD (IY+d),A LD C,C LD L,(IX+d)
LD (IY+d),B LD C,D LD L,(IY+d)
LD (IY+d),C LD C,E LD L,A
LD (IY+d),D LD C,H LD L,B
LD (IY+d),E LD C,L LD L,C
LD (IY+d),H LD C,n LD L,D
LD (IY+d),L LD D,(HL) LD L,E
LD (IY+d),n LD D,(IX+d) LD L,H
LD (nn),A LD D,(IY+d) LD L,L
LD (nn),BC LD D,A LD L,n
LD (nn),DE LD D,B LD R,A
LD (nn),HL LD D,C LD SP,(n
LD (nn),IX LD D,D LD SP,HL
LD (nn),IY LD D,E LD SP,IX
LD (nn),SP LD D,H LD SP,IY
LD A,(BC) LD D,L LD SP,nn
LD A,(DE) LD D,n
LD A,(HL) LD DE,(n
LD A,(IX+d) LD DE,nn
LD A,(IY+d) LD E,(HL)
LD A,(nn) LD E,(IX+d)
LD A,A LD E,(IY+d)
LD A,B LD E,A
LD A,C LD E,B
LD A,D LD E,C
LD A,E LD E,D
LD A,H LD E,E
LD A,L LD E,H
LD A,n LD E,L
LD A,R LD E,n
LD A,I LD H,(HL

**

 In addition to the registers we have ment

Z80 has several additional registers. The most important of these
are the so called prime registers, which are designated A' BC'
DE' and HL'. You cannot access these registers directly, but you
can swap them with the ordinary registers. If you type in the
following code

LD BC,1234H:LD DE,5678H:LD HL,9ABCH the registers will appear

 CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SPA

00 000000 1234 5678 9ABC 0000 0000 00 000000 0000 0000 0000 0000

Now type in

X whEX ich swaps BC DE and HL with the prime registers

 CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP

u can now work on the normal registers, eg

en you want to swap the registers back again use EXX

e EXX statement is very useful for storing variables you are

veral other commands exist that swap registers.

 AF,AF'

aps the DE register and the HL register.

 (SP),HL

l swap the memory contents pointed to by the SP register with

,5678H:LD (1000H),BC:LD SP,1000H then

register is swapped with the

change Commands

X EX (SP),HL

**

 Chapter 3 The Stack

A
00 000000 0000 0000 0000 0000 0000 00 000000 1234 5678 9ABC 0000

Yo

LD BC,1111H

Wh

Th
working on without having to save them in memory. The equivalent
store to memory for these three registers would take 3 LD
statements.

Other EX commands

Se

EX

swaps the A register and the flags with the corresponding prime
registers. It is commonly used with EXX.

 DE,HL EX

sw

EX
EX (SP),IX
EX (SP),IY

al
the corresponding register. The equivalent code for EX
(SP),HL could be

 HL,1234H:LD BCLD

LD BC,(1000H):LD (1000H),HL:LD HL,BC

us in the case of EX (SP),HL the L Th

data at the memory location pointed to by the SP register, and
the H register is swapped with the memory location + 1 pointed to
by the SP register. Type MEMORY to check this.

Ex

EX
EX AF,AF' EX (SP),IX
EX DE,HL EX (SP),IY

**

 The memory of a computer can be thought of as a library,
with each book representing a memory location. LD BC,(350) is
like finding the 350th book. The stack on the other hand is like
a pile of books. Instead of storing the BC register in memory
location 350 and then retrieving it later we can put it on top of
a pile of books, and take it off later.

 The following code shows how the stack works

SH BC takes the BC register and puts it on top of the pile

 BC,0 clears the BC register, and

P BC takes the top book and puts it back in the BC register.

 In fact the data in 502 and 503 could have been POP ed into

SH BC:POP DE

 locations are used to store data you have to set

e PUSH and POP instruction both work on double register pairs

e stack commands

SH AF POP AF

LD BC,1234:LD SP,504H initialises the registers

PU
of books.

LD

PO

If you now view the memory you can see what has happened. The SP
register was used as a pointer as to where the top of the pile of
books was. Thus after PUSH BC, 503H contains 12 or the H
register, and 502 contains 34 or the L register. The SP was 502.
POP BC put 502 into the L register and 503 into the H register,
and added 2 to SP to make 504 again.

any register. Try the dollowing to confirm this

PU

cause memoryBe

where you wnat the stack to be before using PUSH and POP. The
stack was in this case set at 504 but could have been any
location. The instruction LD SP,504 should occur before any PUSH
or POP instructions are used and so usually appears near the
beginning of a program. Most programs would use a maximum of 20
PUSH's before POP's so you need to make sure that about 40 memory
locations below the initial value of the SP are not used. The ORG
instruction is used to reserve this memory.

Th
only. Thus for the purposes of this instruction the A register
and the flag register are grouped together as an AF register,
with the F register being the least significant byte. The way the
individual flags are grouped in the F register is discussed in
the chapter on the flags.

Th

PU
PUSH BC POP BC
PUSH DE POP DE

PUSH HL POP HL
PUSH IX POP IX
PUSH IY POP IY

**

 Chapter 4 Arithmetic

 Arithmetic in machine code is a little different to

 When two numbers are added or subtracted there needs to be a

e Z or Zero flag, which is set to 1 if the result is zero, and

e P flag is set when the parity is odd, and reset when it is

e S or Sign flag, which is set to 1 if the result of an

H or half carry flag, which is used when converting hex

 Adding

e following code shows how to add two numbers.

 CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP

 you now type ADD A,255 then the result will be

e carry flag has been set to indicate that the answer was

arithmetic in a higher level language such as BASIC or FORTRAN.
Registers can be added, subtracted, but multiplication and
division require a short program. Other instructions exist to
compare two numbers and increment or decrement registers.

way of signalling a carry or borrow if this has occurred. In
addition to a carry five other features of the operation, such as
= to zero and negative or positive are signalled. This is done
using the flags, which are shown in the register display as
CZPSNH. The six flags are covered briefly below and are covered
in more detail in the chapter on the flags and on number basses.

The C or carry flag is set if the result of an add is too great
for the register to hold the value. In subtraction it is set if
the answer is less than 0, necessitating a borrow.

Th
reset to 0 if the result is not zero.

Th
even. It is also used by some instructions to signify overflow,
and thus is sometimes written as the P/V flag.

Th
operation is between 0 and 127, and reset to 0 if between 128 and
255.

e Th

values to BCD. The N flag indicates whether the last instruction
was an add or subtract. These flags are used by the DAA
instruction.

Th

 A,5:ADD A,3 will produce LD

A
08 000000 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

if

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
07 100001 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

Th

greater than 255.

If you now use ADD A,248 then the answer will be 0, and the Z

e 8 bit instructions all add either a number, or another

or carry flag 1 if answer >255 else 0

mplement else 0

f carry from bit 3 to bit 4 else 0

 you want to add numbers that are more than the 0-255 that can

or carry flag 1 if answer >65535 else 0

f carry from bit 11 to bit 12 else 0

 8 bit and 16 bit ADD instructions

IY,BC

 Add with carry

is set of instructions are essentially the same as the ADD set,

flag will be set.

Th
register to the A register. The flags are set on the result
contained in the A register as follows.

C
Z or zero flag 1 if answer = 0 else 0
P flag 1 if overflow in twos co
S or sign flag 1 if 127<answer<256 else 0
N flag 0
H or half carry flag 1 i

 16 bit arithmetic

If
be stored in the A register, then the HL, IX or IY registers can
be used. Thus LD HL,1000H:LD BC,2000H:ADD HL,BC will give

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
00 000000 2000 0000 3000 0000 0000 00 000000 0000 0000 0000 0000

The flags are set as follows.

C
Z or zero flag not changed
P flag not changed
S or sign flag not changed
N flag 0
H or half carry flag 1 i

D A,A ADD A,(HL) ADD HL,BC ADD AD

ADD A,B ADD A,(IX+d) ADD HL,DE ADD IY,DE
ADD A,C ADD A,(IY+d) ADD HL,HL ADD IY,IY
ADD A,D ADD HL,SP ADD IY,SP
ADD A,E ADD IX,BC
ADD A,H ADD IX,DE
ADD A,L ADD IX,IX
ADD A,n ADD IX,SP

 8 bit group

Th
but add the carry flag as well. The instruction is ADC instead of
ADD. Thus LD A 4:ADC A 3 would give an answer of 7 if the carry
flag was 0, but an answer of 8 if the carry flag was 1 before the
instruction.

The ADC instruction allows multiple precision adding. The least

or carry flag 1 if answer >255 else 0

se 0

f carry from bit 3 to bit 4 else 0

C A,A ADC A,B ADC A,C ADC A,D

e 16 bit ADC instructions use the HL register instead of the A

or carry flag 1 if answer >65536 else 0

7 else 0

f carry from bit 11 else 0

C HL,BC ADC HL,DE ADC HL,HL ADC HL,SP

 Subtracting

 The SUB group

SUB which is the opposite

B is used for 8 bit subtractions. The number or register is

mplement else 0

most significant bytes are added, and the carry is propogated to
the next most significant bytes by using ADC.

For the 8 bit ADC's using th A register the flags are affected

C
Z or zero flag 1 if result = 0 else 0
P flag 1 if TC <-128 or >127 el
S or sign flag 1 if 127 < n < 256 else 0
N flag 0
H or half carry flag 1 i

 8 bit ADC instructions

AD
ADC A,E ADC A,H ADC A,L ADC A,n
ADC A,(HL) ADC A,(IX+d) ADC A,(IY+d)

 16 bit ADC group

Th
register. The flags are affected as follows

C
Z or zero flag 1 if result = 0 else 0
P flag 1 if TC <-32768 or >3276
S or sign flag 1 if 32767 < n < 65536 else 0
N flag 0
H or half carry flag 1 i

 16 bit ADC group

AD

ere are two subtraction instructions, Th

of ADD, and SBC which is subtract with borrow. Thus

 A,6:SUB 2 gives A = 4. LD

SU
subtracted from the A register and the result stored in the A
register. One of the idiosyncracities of the Z80 instrcution set
is that the A register is not written as it is with ADD, viz ADD
A C but SUB C. In addition although there are 16 bit ADD's there
are no 16 bit SUB's. (16 bit subtraction is done using the SBC
instruction.) The flags are set as follows

C or carry flag 1 if answer <0 else 0
Z or zero flag 1 if answer = 0 else 0
P flag 1 if overflow in twos co
S or sign flag 1 if 127<answer<256 else 0

N flag 1
H or half carry flag 1 if borrow from bit 4 else 0

 SUB instruction set

SUB A SUB B SUB C SUB D SUB E SUB H

 Subtract with borrow

 8 bit group

 A,7:SBC A,3 gives A=4 if the carry flag was 0 and A=3 if it

e flags are affected as follows

else 0
se 0

f borrow from bit 12 else 0

C A,A SBC A,B SBC A,C SBC A,D

row

ese instructions subtract the designated register from the HL

answer < 0 else 0

8 else 0

f borrow from bit 12 else 0

 16 bit SBC group

 SBC HL,SP

 Compares

e compare instruction can be thought of as an 8 bit SUB

contents of the A register remain unchanged. Thus

SUB L SUB n SUB (HL) SUB (IX+d) SUB (IY+d)

The SBC instruction group is the opposite to the ADC group. The
register or number is subvtracted from the A register, along with
the C flag, and the result stored in the A register. Thus

LD
was 1 before the SBC.

Th

C or carry flag 1 if <0 else 0
Z or zero flag 1 if result = 0
P flag 1 if TC >127 or <-128 el
S or sign flag 1 if 127 < n <256 else 0
N flag 1
H or half carry flag 1 i

SB
SBC A,E SBC A,H SBC A,L SBC A,n
SBC A,(HL) SBC A,(IX+d) SBC A,(IY+d)

 16 bit subtracts with bor

Th
register pair and store the answer in the HL register pair. The
flags are affected as follows

or carry flag 1 if C

Z or zero flag 1 if result = 0 else 0
P flag 1 if TC >32767 or <-3276
S or sign flag 1 if 32767 < n < 65536 else 0
N flag 1
H or half carry flag 1 i

C HL,BC SBC HL,DE SBC HL,HL SB

Th
instruction in the way the flags are changed, except that the

LD A,9:CP 9 gives

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
09 010010 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

where for example the zero flag has been set because 9 - 9 is
zero, but the A register still contains the original 9. The set
is

CP A CP B CP C CP D CP E CP H
CP L CP n CP (HL) CP (IX+d) CP (IY+d)

 Increment

Increments are the same as adding a 1. Thus INC B is the same as
LD A,B:ADD A,1:LD B,A. The results of all increments to single
registers affect the flags as if an ADD had been perfomed.
However for double register groups, such as INC BC the registers
are unaffected. The first two columns are the 8 bit increments
that do affect the flags, and the last column is the 16 bit
increments that leave the flags unchanged.

INC A INC (HL) INC BC
INC B INC (IX+d) INC DE
INC C INC (IY+d) INC HL
INC D INC IX
INC E INC IY
INC H INC SP
INC L

 Decrement

These are the opposite to the increment group, the subtract 1
from the register in question. As before single register
decrements affect the flags as a subtract would, but double
register decrements leave the flags as they are.

DEC A DEC (HL) DEC BC
DEC B DEC (IX+d) DEC DE
DEC C DEC (IY+d) DEC HL
DEC D DEC IX
DEC E DEC IY
DEC H DEC SP
DEC L

**

 Chapter 5 Jumps Calls and Returns

 There are five instructions in this group. JP and JR are
like GOTO in basic, and jump to the corresponding line. CALL is
like GOSUB, and calls a subroutine. RET returns from the
subroutine.

Jumps

The simplest type of jump is demonstrated by the following short
program.

Line1: LD A,5:JP Line 3
Line2: end
line3: LD B,6:END

Line2 is never encountered because the program jumps to Line3.

The next type of jump only occurs if the flag condition specified
by the jump is true.

Line1: LD A,0:LD B,5
Line2: ADD A,1:DEC B:JP NZ Line2
 END

Line1 loads B with 5. The program now loops through line2
until B is equal to 0. This is because JP NZ only jumps if the
result of the last operation to affect the Z flag was not zero.
Since the zero flag is set to 0 by DEC B if B is not equal to 0
the program loops until B=0.

The following are the conditions that can be used with JP.

NZ Jump if zero flag = 0. (last Z flag instr <>0)
Z Jump if zero flag = 1. (last Z flag instr = 0)
NC Jump if carry flag = 0. (last C instr = no carry)
C Jump if carry flag = 1. (last C instr = carry)
PO Jump if parity odd, parity flag = 0.
PE Jump if parity even, parity flag = 1.
P Jump if sign positive, sign flag = 0.
M Jump if sign negative (minus), sign flag = 1.

Relative jumps

 In the interpreter the JR instruction is the same as the JP
instruction. However there is a difference between the two in the
compiled program. The JR instruction, instead of storing the
value of the location to be jumped to, instead stores a
displacement value, which may be anything between +127 and -127.
A displacement value of say -3 says jump to the instruction 3
bytes before this one.

 The reasoning behind this is that relative jumps take only
two bytes of memory wheras ordinary jumps take three. However
this memory saving is offset by the fact that ordinary jumps are
quicker than relative jumps. In addition conditional jumps PO PE
P and M are not allowed with JR.

 All this means that in practical terms it is probably better
to ignore the JR instruction and to only use the JP instuction.

DJNZ

The third type of jump is the DJNZ instruction. The following

program shows how it works.

Line1: LD A,0:LD B,5
Line2: ADD A,1:DJNZ Line2
 END

Line1 sets A to 0 and B to 5. Line2 adds one to A. The DJNZ
subtracts one from register B, and if the result is not zero
jumps to the location shown. Thus the program loops through 20
until B is 0, and then ends.

 Summary of Jump instructions

JP nn JP Z,nn JP PE,nn JR NZ,nn
JP (HL) JP NC,nn JP P,nn JR Z,nn
JP (IX) JP C,nn JP M,nn JR NC,nn
JP (IY) JP PO,nn JR nn JR C,nn
JP NZ,nn DJNZ nn

Calls

Subroutines are called by a CALL and terminated by a RET.

Start: LD A,5:CALL Subroutine
 END

Subroutine:LD B,4:ADD A,B:RET

The return location is stored in the stack.

CALL's like jumps can be conditional, and the same rules
apply. RET's can also be conditional.

 In addition there are two additional returns, RETI and RETN,
which return from interupts and non maskable interrupts
respectively. Since interrupts are not implemented on the
interpreter these two instructions do nothing. They can be
included if they will be used in the final compiled program.

 Summary

CALL nn RET nn
CALL NZ,nn RET NZ,nn
CALL Z,nn RET Z,nn
CALL NC,nn RET NC,nn
CALL C,nn RET C,nn
CALL PO,nn RET PO,nn
CALL PE,nn RET PE,nn
CALL P,nn RET P,nn
CALL M,nn RET M,nn
 RETI
 RETN

**

 Chapter 6 AND OR and XOR

These instructions all work on the A register and peform bit by
bit comparisons with the appropriate register. For example

LD A,1010000B:LD B,0000001B:OR B gives

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
A1 000100 0100 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

AND OR and XOR perform bit by bit comparisons of the designated
register and the A register according to the following rules.

 A register bit other register bit A bit set to

AND 0 0 0
 0 1 0
 1 0 0
 1 1 1

OR 0 0 0
 0 1 1
 1 0 1
 1 1 1

XOR 0 0 0
 0 1 1
 1 0 1
 1 1 0

The flags are also set by the result in the A register, the
details of which are in Ch 17. Note that the AND command affects
the H flag differently to the other two, however all the other
flags are affected the same way.

 Instruction set

(n is any number or label that can be resolved into an 8 bit
number)

AND A OR A XOR A
AND B OR B XOR B
AND C OR C XOR C
AND D OR D XOR D
AND E OR E XOR E
AND H OR H XOR H
AND L OR L XOR L
AND n OR n XOR n

**

 Chapter 7 Bit set, reset and test

 The instructions in this group allow a specific bit in a
register or memory location to be set to 1, reset to 0 or tested
to see if it is 1 or 0.

 SET

LD C,0:SET 3,C

sets byte 3 of register 3 to 1. The result is register C = 8 in
hexadecimal.

The following table shows how the bits are numbered in a byte.

 01010101
 76543210

Bit 7 on the left is the most significant bit and bit 0 on the
right is the least significant. For 16 bit numbers bit 15 is on
the left and bit 0 is on the right.

The registers that can be set, reset or tested are

A B C D E H L and the memory location pointed to by (HL)
(IX+d) or (IY+d).

 RES

The RES instruction is the opposite of the SET instruction, it
changes the appropriate bit to 0. Thus

LD H,11111111B:RES 5,H

results in a value of 0DFH

Flags are not affected by either the SET or RES instructions.

 BIT

The BIT instruction is used to test whether a specific bit is a
zero or a one.

LD D,10101010B:BIT 5,D results in

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
00 000001 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

The flags, which indicate the result of the test, are set as
follows.

C or carry flag not affected
Z or zero flag 1 if bit is zero else 0
P or parity/overflow may be anything
S or sign flag may be anything
N or subtract flag 0
H or half carry flag 1

 Summary of instructions

SET 0,A SET 4,A RES 0,A RES 4,A BIT 0,A BIT
4,A

SET 0,B SET 4,B RES 0,B RES 4,B BIT 0,B BIT
4,B
SET 0,C SET 4,C RES 0,C RES 4,C BIT 0,C BIT
4,C
SET 0,D SET 4,D RES 0,D RES 4,D BIT 0,D BIT
4,D
SET 0,E SET 4,E RES 0,E RES 4,E BIT 0,E BIT
4,E
SET 0,H SET 4,H RES 0,H RES 4,H BIT 0,H BIT
4,H
SET 0,L SET 4,L RES 0,L RES 4,L BIT 0,L BIT
4,L
SET 0,(HL) SET 4,(HL) RES 0,(HL) RES 4,(HL) BIT 0,(HL) BIT
4,(HL)
SET 0,(IX+d) SET 4,(IX+d) RES 0,(IX+d) RES 4,(IX+d) BIT 0,(IX+d) BIT
4,(IX+d)
SET 0,(IY+d) SET 4,(IY+d) RES 0,(IY+d) RES 4,(IY+d) BIT 0,(IY+d) BIT
4,(IY+d)
SET 1,A SET 5,A RES 1,A RES 5,A BIT 1,A BIT
5,A
SET 1,B SET 5,B RES 1,B RES 5,B BIT 1,B BIT
5,B
SET 1,C SET 5,C RES 1,C RES 5,C BIT 1,C BIT
5,C
SET 1,D SET 5,D RES 1,D RES 5,D BIT 1,D BIT
5,D
SET 1,E SET 5,E RES 1,E RES 5,E BIT 1,E BIT
5,E
SET 1,H SET 5,H RES 1,H RES 5,H BIT 1,H BIT
5,H
SET 1,L SET 5,L RES 1,L RES 5,L BIT 1,L BIT
5,L
SET 1,(HL) SET 5,(HL) RES 1,(HL) RES 5,(HL) BIT 1,(HL) BIT
5,(HL)
SET 1,(IX+d) SET 5,(IX+d) RES 1,(IX+d) RES 5,(IX+d) BIT 1,(IX+d) BIT
5,(IX+d)
SET 1,(IY+d) SET 5,(IY+d) RES 1,(IY+d) RES 5,(IY+d) BIT 1,(IY+d) BIT
5,(IY+d)
SET 2,A SET 6,A RES 2,A RES 6,A BIT 2,A BIT
6,A
SET 2,B SET 6,B RES 2,B RES 6,B BIT 2,B BIT
6,B
SET 2,C SET 6,C RES 2,C RES 6,C BIT 2,C BIT
6,C
SET 2,D SET 6,D RES 2,D RES 6,D BIT 2,D BIT
6,D
SET 2,E SET 6,E RES 2,E RES 6,E BIT 2,E BIT
6,E
SET 2,H SET 6,H RES 2,H RES 6,H BIT 2,H BIT
6,H
SET 2,L SET 6,L RES 2,L RES 6,L BIT 2,L BIT
6,L
SET 2,(HL) SET 6,(HL) RES 2,(HL) RES 6,(HL) BIT 2,(HL) BIT
6,(HL)
SET 2,(IX+d) SET 6,(IX+d) RES 2,(IX+d) RES 6,(IX+d) BIT 2,(IX+d) BIT
6,(IX+d)

SET 2,(IY+d) SET 6,(IY+d) RES 2,(IY+d) RES 6,(IY+d) BIT 2,(IY+d) BIT
6,(IY+d)
SET 3,A SET 7,A RES 3,A RES 7,A BIT 3,A BIT
7,A
SET 3,B SET 7,B RES 3,B RES 7,B BIT 3,B BIT
7,B
SET 3,C SET 7,C RES 3,C RES 7,C BIT 3,C BIT
7,C
SET 3,D SET 7,D RES 3,D RES 7,D BIT 3,D BIT
7,D
SET 3,E SET 7,E RES 3,E RES 7,E BIT 3,E BIT
7,E
SET 3,H SET 7,H RES 3,H RES 7,H BIT 3,H BIT
7,H
SET 3,L SET 7,L RES 3,L RES 7,L BIT 3,L BIT
7,L
SET 3,(HL) SET 7,(HL) RES 3,(HL) RES 7,(HL) BIT 3,(HL) BIT
7,(HL)
SET 3,(IX+d) SET 7,(IX+d) RES 3,(IX+d) RES 7,(IX+d) BIT 3,(IX+d) BIT
7,(IX+d)
SET 3,(IY+d) SET 7,(IY+d) RES 3,(IY+d) RES 7,(IY+d) BIT 3,(IY+d) BIT
7,(IY+d)

**

 Chapter 8 Rotate and shift group

The instructions in this chapter are concerned with shifting or
rotating the bits in a particular register. For example

10001000 shifted right becomes 01000100

 Rotate group

There are four instructions that rotate the contents of the A
register only.

 RLCA

RLCA rotates the A register to the left one place. The 7th bit is
put back into the 0 position. The 7th bit also goes to the carry
flag.

LD A,10011000B:RLCA gives

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
31 100000 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

Use View Registers to see the value of A in binary= 00110001B

The flags are affected as follows

C or carry flag previous bit 7 value
Z or zero flag not affected
P or parity/overflow not affected

S or sign flag not affected
N or subtract flag 0
H or half carry flag 0

The RLCA instruction can be represented symbolically as

C <--- bbbbbbbb <-
 | |

 RLA

The RLA instruction rotates left through the carry flag.

 --- C <--- bbbbbbbb <--
| |
------------- > ----------

The bits in the register are all rotated left, the 7th bit goes
to the carry flag and the carry flag goes to bit 0.

LD A,1 then

RLA 9 times, looking at the value of A each time will clarify the
operation of this instruction.

Apart from the carry flag, the other flags are set as for RLCA.

 RRCA

This rotates the register right in a similar way to RLCA.
Symbolically

 ---> bbbbbbbb ---> C
| |
 ------ < -----

The register is shifted right by one, and the 0 bit goes to the
carry flag and to the 7th bit. Flags apart from the carry are as
for RLCA.

 RRA

The RRA rotates right through the carry flag

 ---> bbbbbbbb ---> C --
| |
 ----------- < ---------

The register is shifted right by one, the 0 bit goes to the carry
flag, and the carry flag goes to bit 7. Flags apart from the
carry flag are as for RLCA.

 Rotates through other registers

The next set of instructions are similar to the above, but act on
any one of A B C D E H L (HL) (IX+d) or (IY+d). They also affect
the flags differenty.

 RLC x

The RLC instruction rotates the register left by one. It can be
represented symbolically as

C <--- bbbbbbbb <-
 | |

To demonstrate this instruction type

LD D,1 and then

RLC D until the 1 has gone all the way round.

The flags are affected as follows

C or carry flag previous bit 7 value
Z or zero flag 1 if result is zero, else 0
P or parity/overflow 1 if parity even, else 0
S or sign flag 1 if 127<result<256, else 0
N or subtract flag 0
H or half carry flag 0

 RL x

The RL instruction rotates the register through the carry flag.

 --- C <--- bbbbbbbb <--
 | |
 ------------- > ----------

The register is rotated left by one, the 7th bit goes to the
carry flag, and the carry flag goes to the 0 bit. Flags apart
from the carry flag are as for RLC. RL works on the same
registers as RLC.

 RRC x

The RRC instruction rotates the register right.

 ---> bbbbbbbb ---> C
 | |
 ------ < -----

The register is rotated right by one, the 0 bit goes to bothe the
carry flag and the 7th bit. Flags apart from the carry flag are
as for RLC. RRC works on the same registers as RLC.

 RR x

The RR instruction rotates the register right through the carry
flag.
 ---> bbbbbbbb ---> C --
 | |
 ----------- < ---------

The register is rotated right by one, the 0 bit goes to the carry
flag and the carry flag goes to the 7th bit.

 The four bit rotate group

There are two instructions in this group that rotate groups of
bits through the A register and a memory location pointed to by
the (HL) register.

 RLD

The RLD instruction takes groups of four bits and rotates them
as shown symbolically.

 ----->----- -------->----------
12 ---<--- 34 or 1 2 -----<---- 3 <-- 4
 ^|
 -
A (HL) A (HL)

 The register on the left is the A register and the register
on the right is a memory location pointed to by the HL register.
The 4 least significant bits of the A register are moved to the 4
least significant bits of the (HL) location. The 4 least
significant bits of the (HL) location are moved to the 4 most
significant bits of the (HL) location. The 4 most significant
bits of the (HL) location are moved to the 4 least significant
bits of the A register. The 4 most significant bits of the A
register remain unchanged.

LD A,12H:LD HL,1000H:LD (HL),34H sets up the registers as shown
above.

RLD results in

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
13 000000 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

with View Memory giving address 1000H = to 42H.

 The flags are set as follows

C or carry flag not affected
Z or zero flag 1 if result is zero, else 0
P or parity/overflow 1 if parity even, else 0
S or sign flag 1 if 127<result<256, else 0
N or subtract flag 0
H or half carry flag 0

 RRD

The RRD instruction can be represented as follows.

 ---------<--------------
 1 2 ------->----- 3 -->-- 4
 A (HL)

The instruction does the reverse of RLD. The flags are as for
RLD.

 The Shift group

There are three instructions in this group, that can work on the
following registers; A B C D E H L (HL) (IX+d) or (IY+d).

 SLA x

This instruction shifts the designated register left.
Symbolically

 C <--- bbbbbbbb <--- 0

The register is shifted left one place. The 7th bit goes to the
carry flag. The 0 bit has a 0 shifted in.

LD E,1 and then SLA E,9 times will demonstrate this instruction.

Flags are set as follows

C or carry flag from bit 7
Z or zero flag 1 if result is zero, else 0
P or parity/overflow 1 if parity even, else 0
S or sign flag 1 if 127<result<256, else 0
N or subtract flag 0
H or half carry flag 0

 SRA x

This instruction shifts the designated register right one place.
Symbolically

 --> bbbbbbbb ----> C
 -<--

The bits are all shifted right one. The 0 bit goes to the carry
flag. The 7th bit however stays the same, although the 6th bit
equals the old 7th bit. The flags apart from the carry flag are
as for SLA.

LD C 10000000B and then SRA C 9 times will demonstrate this.

 SRL x

This instruction shifts all the bits right. Symbolically

 0 ---> bbbbbbbb --->C

The bits are all shifted right one. The 0 bit goes to the carry
flag. The 7th bit is replaced with a 0. Flags are as for SLA.

 Summary of rotate and shift group

RLCA RL A RR A SRA A
RLA RL B RR B SRA B
RRCA RL C RR C SRA C
RRA RL D RR D SRA D
RLD RL E RR E SRA E
RRD RL H RR H SRA H
RLC A RL L RR L SRA L
RLC B RL (HL) RR (HL) SRA (HL)
RLC C RL (IX+d) RR (IX+d) SRA (IX+d)
RLC D RL (IY+d) RR (IY+d) SRA (IY+d)
RLC E RRC A SLA A SRL A
RLC H RRC B SLA B SRL B
RLC L RRC C SLA C SRL C
RLC (HL) RRC D SLA D SRL D
RLC (IX+d) RRC E SLA E SRL E
RLC (IY+d) RRC H SLA H SRL H
 RRC L SLA L SRL L
 RRC (HL) SLA (HL) SRL (HL)
 RRC (IX+d) SLA (IX+d) SRL (IX+d)
 RRC (IY+d) SLA (IY+d) SRL (IY+d)

**

 Chapter 9

 General purpose arithmetic and CPU control group

 NOP

This is the simplest Z80 instruction, and simply does nothing.

 NOP:NOP:NOP:END

NOP's are useful for creating delays.

 HALT

This instruction halts the CPU. In the interpreter this returns
control to programmer, and is equivalent to STOP in BASIC.
In the microprosessor this stops program
execution until an interrupt is recieved. The Z80 performs NOP's
to ensure proper memory refresh.

 DI

DI disables the interrupts. Since interrupts are not supported by
the interpreter the interpreter ignores this instruction. To find
out more about how the various types of interrupts work on the
Z80 consult one of the Z80 texts.

 LD A,4:DI:LD B,3:EI:END

 EI

EI enables the interrupts. See DI

 IM n

This instruction sets the interrupt mode. As with EI it is
ignored by the interpreter. n can be one of 0 1 or 2. Thus

 IM 2:LD A,5:IM 0:END

 SCF

SCF sets the carry flag to 1.

 LD A 5:SCF:END gives

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
05 100000 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

The Z, P and S flags are unaffected. The N and H flags are reset
to 0.

To set the carry flag to 0 use SCF then CCF.

 CCF

CCF complements the carry flag. If the flag was 1 it is now 0 and
vice versa. The Z P and S flags are unaffected. The N flag is
reset to 0. The H flag may be anything.

 NEG

NEG negates the A register. The mathematical equivalent is
A = 0-A. Thus

LD A,5:NEG gives

A CZPSNH BC DE HL IX IY A' CZPSNH' BC' DE' HL' SP
FB 000111 0000 0000 0000 0000 0000 00 000000 0000 0000 0000 0000

Flags are set as follows

C or carry flag 1 if A=0 before operation, else 0
Z or zero flag 1 if result is zero, else 0
P or parity/overflow 1 if A=128 before operation, else 0

S or sign flag 1 if 127<result<256, else 0
N or subtract flag 1 if borrow from bit 4 else 0
H or half carry flag 1

 CPL

CPL complements the A register. All 0's become 1's and all 1's
0's. The C, Z P and S flags are all unaffected. The N and H flags
are both set to 1.

 DAA

DAA decimally adjusts the accumulator. This instruction allows
decimal numbers to be added. For example let us add 11H and 22H

LD A,11H:ADD A,22H which gives A = 33H

However if we add 22H and 39H

LD A,22H:ADD A,39H we get A = 5BH

The B is illegal in decimal, or BCD, and is corrected by using
DAA. Thus

LD A 22H:ADD A 39H:DAA gives A = 61H, which is correct.

Other examples

LD A,91H:ADD A,92H unadjusted gives 23H, adjusted with DAA gives
83H and carry = 1 (use to get 183)

LD A,99H:ADD A,99H unadjusted gives 32H, adjusted with DAA gives
98H and carry = 1.

DAA also can be used after subtraction

LD A,99H:SUB A,11H unadjusted gives 88H, adjusted with DAA gives
88H.

LD A,91H:SUB A,19H unadjusted gives 78H, adjusted with DAA gives
72H.

LD A,19H:SUB A,91H unadjusted gives 88H, adjusted with DAA gives
28H and carry = 1. (carry is used as borrow in subtracts)

LD A,11H:SUB A,99H unadjusted gives 78H, adjusted with DAA gives
12 and carry = 1.

The way DAA works is to selectively add numbers according to the
value in A, and to the C H and N flags. In fact this is the
purpose of the H and N flags as no other instruction uses them.
The value added is given by the following table, although it is
not necessary to understand or even to have the table to use DAA.
DAA should always be used immediately after the ADD or SUB
instruction to avoid flags being changed. DAA can also be used

with ADC INC SBC DEC NEG etc.

N C Value of H Value of Hex no C flag after
 high nibble low nibble added execution

0 0 0-9 0 0-9 00 0
0 0 0-8 0 A-F 06 0
0 0 0-9 1 0-3 06 0
0 0 A-F 0 0-9 60 1
0 0 9-F 0 A-F 66 1
0 0 A-F 1 0-3 66 1
0 1 0-2 0 0-9 60 1
0 1 0-2 0 A-F 66 1
0 1 0-3 1 0-3 66 1
1 0 0-9 0 0-9 00 0
1 0 0-8 1 6-F FA 0
1 1 7-F 0 0-9 A0 1
1 1 6-F 1 6-F 9A 1

Flags are affected by DAA as follows

C or carry flag as per table
Z or zero flag 1 if A=0 else 0
P or parity/overflow 1 if parity even else 0
S or sign flag 1 if msb A = 1 else 0
N or subtract flag unaffected
H or half carry flag may be anything
 Chapter 11

 Block transfer and search group

Four instructions exist in the Z80 instruction set that are used
to transfer blocks of data from one memory location to another.
Another set of four instructions allow searches through a set or
memory locations for a specific byte.

 Block transfer group; LDI LDD LDIR LDDR

LDI

LDI moves a block of data. HL is the memory location to move
from, DE is the memory location to move to and BC is the
number of bytes to move.

memory contents (DE) = memory contents (HL)
DE = DE + 1
HL = HL + 1
BC = BC - 1

At the end of each loop the P flag indicates if BC is 0 (P=1
if <>0 and 0 if = to 0)

C, Z and S flags are not affected
H and N flags are reset to 0
P flag =1 if after LDI BC is not equal to 0, else P = 0

LDD

LDD is the same as LDI except that the DE and HL registers are
decremented. Thus

(DE) = (HL)
DE = DE - 1
HL = HL - 1
BC = BC - 1

The flags are the same as for LDI. Thus the program above would
be rewritten

LDIR

This is the automatic version of LDI. Set the HL, DE and BC
registers and then run LDIR. If BC is a high value the
instruction can take a while to execute.

LDIR does the following

(DE) = (HL)
DE = DE + 1
HL = HL + 1
BC = BC - 1 and repeats until BC = 0

Flags are a little different;

C, Z and S unchanged
H, N and P = 0

LDDR

This instruction is the automatic version of LDD. The summary is

(DE) = (HL)
DE = DE - 1
HL = HL - 1
BC = BC - 1 and repeat until BC = 0

Flags are as for LDIR.

The question may be asked; why use LDI when LDIR does the
operation automatically. The reason is that the registers can be
changed when using LDI. For instance you can transfer every
alternate bytethis program transfers every
alternate byte between instructions by inserting say a INC
HL.

 oooOOOooo

 Block search group

The next four instructions are concerned with searching for bytes
in a block of data.

CPI

CPI searches starting at the memory location pointed to by the HL
register, and searches for BC number of bytes for the byte
in register A.

A - (HL) and set flags on the result of this compare, equivalent
 to CP (HL)
HL = HL + 1
BC = BC - 1

The flags are set as follows

C = no change
Z = 1 if A - (HL) = 0 else 0
P = 1 if BC <> 0 after instruction else 0
S = 1 if sign A - (HL) negative in two's comp, else 0
H = 1 if a half carry from A - (HL)
N = 1

CPD

CPD is the same as CPI except that the HL register is
decremented; HL = HL - 1. The flags are as for CPI.

CPIR

This is the automatic version of CPI. The instruction repeats
until either A = (HL) or BC = 0. The flags are as for CPI.

CPDR

This is the automatic version of CPD.

Flags are as for CPI.

 Chapter 11 Input and output

The Z80 has several comands that input and output data to the
ports. However many of these are not very useful, and only one
input and one output instruction are used in most Z80 computers.
These are the IN A (n) and OUT (n) A instructions, where n is the
port number between 0 and 255.
Inputs and outputs do nothing on the ZINT interpreter, as
these depend on the actual hardware used.

OTDR INDR
OTIR INIR
OUTD IND
OUTI INI
OUT (C),A IN A,(C)
OUT (C),B IN B,(C)
OUT (C),C IN C,(C)

OUT (C),D IN D,(C)
OUT (C),E IN E,(C)
OUT (C),H IN H,(C)
OUT (C),L IN L,(C)
OUT (n),A IN A,(n)

 Chapter 12 Addtional commands

Apart from the instructions that generate code, there are
additional commands which are needed to test and run the
programs. These shall be looked at in alphabetical order.

 The semicolon ;

The semicolon is used to indicate a remark. These are ignored by
the program.

 LD A,5:; This loads the A register with 5:LD B,3:END

Instructions can be added after the remark, as is the LD B,3.

 END

END is used to indicate the end of a program. It should always
be the last statement in a program, otherwise an error message
will appear.

 EQU

EQU is used to set labels to particular values.

VARIABLE1 EQU 46H

Later in the program, instead of writing say LD A,46H, we can
write LD A,VARIABLE1. This enables the way the program works to
be made a lot clearer.

The label used, in this case VARIABLE1 can be any sequence of
letters or numbers, but should be 3 or more letters long. Thus
EQU X 5 is not allowed. The number can be decimal, hex or binary
number.

To see what the current values of the labels are the
View Label command is used.

Labels should be assigned values before they are encountered in
the program. The value of a label cannot be changed once it has
been assigned.

 ORG

ORG is used to set the origin of the program when it is compiled.
When the program is finally dumped into a Z80 computer's memory,

some way of indicating where the program will start is needed. In
the Z80 it is customary to start the program not in memory
location 0 but at memory location 100H. The first instruction in
the program is a jump to location 100H. This is because the
interrupts jump to locations between 5H and 100H. Thus a standard
way to start a program is

 ORG 0:JP 100H:ORG 100H
 LD A,5 etc...

the interrupts themselves are usually jumps also. Thus the
interrupt at location 66H could be set by

 ORG 66H:JP Interrupt
Interrupt:LD A,5 etc program to service interrupt.

ORG is probably best ignored until you are familiar with the
other instructions, as it is not necessary to write simple
programs.

 Chapter 13 Number Bases

 This chapter explains the number bases that are used by the
interpreter. The appendix contains all the conversions from 0 to
255. For numbers larger than this the BASE command can be used.
The bases to be cavered are binary, hexadecimal and two's
complement.

 Binary

 Binary is the system of counting used by computers as it
only has two digits, 0 and 1. A number in binary is written with
a B on the end to differentiate it from the other bases; 1011B

 Hexadecimal

 Hexadecimal or Hex numbers use a base of 16, rather than 10
used in the decimal system. The digits used are 0 1 2 3 4 5 6 7 8
9 A B C D E F
 Hex numbers have a H on the end. In addition all H numbers
should start with a number from 0 to 9 to distinguish them from
text. A 0 is usually added to the beginning for this reason. Some
examples of hex numbers are
0D3H 0FFH 012H 0ABCDH 28E6H 0H

 Two's complement

 Two's complement is a number system that ranges from -128 to
+127. The result of the sum in two's complement is used to set
one of the registers in the Z80; the overflow register. Numbers
from 0 to 127 in decimal are the same in twos complement. However
from 128 to 255 all two's complement numbers are negative.
 TC numbers are calculated by subtracting 256 from the
dicimal number if the decimal number is between 128 and 255

inclusive. Thus 255 is -1 in TC, 128 is -128 and 45 is 45. There
is no special ending to distinguish TC numbers, the - sign is all
that is needed.

 Other bases

Other bases such as octal are not used by the interpreter. ASCII
symbols may be used providing they are in the range 32 to 127.
They are written in quotes, thus LD A "s" results in A being 73
hex or 115 decimal, which is the ascii value for small s.

 Chapter 14 The flags

This chapter discusses the 6 flags used by the Z80, and the
conditions which affect them. The flags are represented in the
register display by the symbols CZPSNH.

 The Z or zero flag

The Z flag is set to 1 of the result of an operation is 0. If the
result is other than 0 then the Z flag is reset to 0. The table
below summarizes the instructions that affect the Z flag.

Group Instruction Action

8 bit LD A I Z = 1 if register = 0 else 0
load group LD A R Z = 1 if register = 0 else 0

Search group CPI, CPIR, Z = 1 if A = (HL) else 0
 CPD, CPDR

 ADD A x Z = 1 if register = 0 else 0
 ADC A x "
 SUB x "
 SBC A x "
 AND x "
8 bit OR x "
arithmetic XOR x "
group CP x "
 INC x "
 DEC x "

General purpose DAA "
arithmetic group NEG "

16 bit ADC HL xx "
arithmetic group SBC HL xx "

 RLC x "
 RL x "
 RRC x "
Rotate and RR x "
shift group SLA x "
 SRA x "
 SRL x "

 RLD "
 RRD "

Bit test group BIT n x Z = 1 if bit = 0 else 0

Input and INR (C) Z = 1 if input data =0 else 0
output group INI, IND, Z = 1 if B-1=0 else 0
 INIR, INDR, Z = 1
 OUTI, OUTD, Z = 1 if B-1=0 else 0
 OTIR, OTDR Z = 1

 The S or sign flag

The sign flag is used to indicate whether in twos complement
notation a number is negative or positive. (see chapter 16 for
more about two's complement) Thus if the number is negative (-
128 to -1) then the sign flag is set to 1. If the number is
positive (0 to 127) then the sign flag is reset to 0.

Group Instruction Action

8 bit LD A I S = 1 if I register negative else 0
load group LD A R S = 1 if R register negative else 0

Search CPI,CPIR, S = 1 if result negative else 0
group CPD,CPDR "

 ADD A x "
 ADC A x "
 SUB x "
8 bit SBC A x "
arithmetic AND x "
group OR x "
 XOR x "
 CP x "
 INC x "
 DEC x "

General purp DAA "
arithmetic NEG "

16 bit ADC HL xx "
arithmetic SBC HL xx "

 RLC x "
 RL x "
 RRC x "
Rotate and RR x "
shift group SLA x "
 SRA x "
 SRL x "
 RLD x S = 1 if A negative else 0
 RRD x S = 1 if A negative else 0

Bit test gp BIT n x may be anything

 / IN R (C) S = 1 if input data negative else 0

Input and INI,INIR,
output IND,INDR, may be anything
group OUTI,OTIR,
 \ OUTD,OTDR

 The C or carry flag

The carry flag is used to indicate whether the result of an
operation (in decimal) was greater than 255 or less than 0.

LD A,150:ADD A,200

results in an answer of 350, which is adjusted to 94 (or 5EH in
hex) by subtracting 256, and the carry flag is set. In
subtraction the carry flag is used as a borrow, and is set to 1
if the answer was less then 0, and so had to be corrected by
adding 256.

LD A,100:SUB 210

results in -110, which is adjusted to 146 (92H) by adding 256,
and the carry flag is set to 1.

Group Instruction Action

 / ADD A x C = 1 if carry from bit 7 else 0
 ADC A x "
8 bit SUB x C = 1 if borrow else 0
arithmetic SBC A x "
group AND C = 0
 OR C = 0
 XOR C = 0
 \ CP C = 1 if borrow else 0

General / DAA C = 1 if bcd carry else 0
purpose NEG C = 1 if A not 0 before negate else 0
arithmetic CCF C = 1 if C = 0 before CCF else 0
group \ SCF C = 1

 / ADD HL xx C = 1 if carry from bit 15 else 0
16 bit ADC HL xx "
arithmetic ADD IX xx "
group ADD IY xx "
 \ SBC HL xx C = 1 if borrow else 0

 / RLCA C = previous A bit 7
 RLA "
 RRCA C = previous A bit 0
Rotate RRA "
and shift RLC x C = previous bit 7 of operand
group RL x "
 RRC x C = previous bit 0 of operand
 RR x "
 SLA x C = previous bit 7 of operand

 SRA x C = previous bit 0 of operand
 \ SRL x C = previous bit 0 of operand

 The P or P/V parity or overflow flag

As the heading suggests this flag has more than one function.

Parity. The parity of a byte is the number of 1's the byte has
when it is represented in binary. 43 decimal in binary is
00101011, which has 4 1's. If the number of 1's is even
(including 0) then the byte has even parity and the P flag is set
to 1. 59 in binary is 00111110 which has 5 1's and thus the P
flag is set to 0. The instructions which use the P flag as a
parity flag are indicated in the table.

Overflow. This is the other major use for the P flag. Most of the
arithmetic instructions use the P flag as an overflow flag, and
this is why the flag is sometimes written as P/V. Overflow occurs
when, during a two's complement addition the result in two's
complement is >127 or <-128. (see the chapter on bases for more
about two's complement). If this error condition occurs the P
flag is set to 1, otherwise it is set to 0.

The P flag is also used by the block transfer instructions, and
is set to 1 if after the instruction the BC register is not equal
to 0.

Group Instruction Action

8 bit LD A I P = contents of IFF2
load group LD A R "

Block / LDI, LDD, P = 1 if BC - 1 <> 0 else 0
transfer CPI, CPIR, "
and load CPD, CPDR "
group \ LDIR, LDDR P = 0

 / ADD A x P = 1 if overflow else 0
 ADC A x "
 SUB x "
8 bit SBC A x "
arithmetic AND x P = 1 if parity even else 0
group OR x "
 XOR x "
 CP x P = 1 if overflow else 0
 INC x P = 1 if x=7FH before, else 0
 \ DEC x P = 1 if x=80H before, else 0

Gen purp DAA P = 1 if A parity even
arithmetic NEG P = 1 if A = 80H before, else 0

16 bit ADC HL xx P = 1 if overflow else 0
arithmetic SBC HL xx "

 / RLC x P = 1 if perity even else 0
 RL x "
 RRC x "
Rotate and RR x "
shift group SLA x "
 SRA x "
 SRL x "
 RLD x "
 \ RRD x "

Bit test gp BIT n x may be anything

 / IN R (C) P = 1 if parity even else 0
Input and INI,INIR, may be anything
output IND,INDR, "
group OUTI,OTIR, "
 \ OUTD,OTDR "

The following are a list of 8 bit additions and subtractions
showing the calculation in decimal and in two's complement, with
the effect on the S C and P flags. None of the answers are zero
so the Z flag is zero for all of these.

D 64 + 65 = 129 C = 0
TC 64 + 65 = 129 -> -127 P = 1 S = 1

D 255 + 255 = 510 -> 254 C = 1
TC -1 + -1 = -2 P = 0 S = 1

D 192 + 191 = 383 -> 127 C = 1
TC -64 + -65 = -129 -> 127 P = 1 S = 0

D 6 + 8 = 14 C = 0
TC 6 + 8 = 14 P = 0 S = 0

D 127 + 1 = 128 C = 0
TC 127 + 1 = 128 -> -128 P = 1 S = 1

D 4 + 254 = 258 -> 2 C = 1
TC 4 + -2 = 2 P = 0 S = 0

D 254 + 252 = 506 -> 250 C = 1
TC -2 + -4 = -6 P = 0 S = 1

D 2 + 252 = 254 C = 0
TC 2 + -4 = -2 P = 0 S = 1

D 129 + 194 = 323 -> 67 C = 1
TC -127 + -62 = -189 -> 67 P = 1 S = 0

D 254 - 129 = 125 C = 0
TC -2 - -127 = 125 V = 0 S = 0

D 196 - 91 = 105 C = 0
TC -60 - 91 = -151 -> 105 P = 1 S = 0

D 12 - 60 = -48 -> 208 C = 1
TC 12 - 60 = -48 P = 0 S = 1

D 146 - 231 = -85 -> 171 C = 1
TC -110 - 231 = -341 -> -85 P = 1 S = 1

 The N or subtract flag and the H or half carry flag

These two flags are used for BCD adds and subtracts. The DAA is
the only instruction that uses these two flags, but the flags are
affected by most of the instruction groups. The H flag indicates
a carry from bit 3 in addition, and a borrow from bit 4 in
subtraction. The N flag is 0 after an add and 1 after a subtract.

Group Instruction H flag N flag

8 bit LD A I 0 0
load group LD A R 0 0

Block / LDI, LDIR, 0 0
transfer & LDD, LDDR, 0 0
Search CPI, CPIR, 1 if borrow from bit 4 else 0 1
group \ CPD, CPDR "

 ADD A x 1 if carry from bit 3 else 0 0
 ADC A x " 0
 SUB x 1 if borrow from bit 4 else 0 1
8 bit SBC A x " 1
arithmetic AND x 1 0
group OR x 0 0
 XOR x 0 0
 CP x 1 if borrow from bit 4 else 0 1
 INC x 1 if carry from bit 3 else 0 0
 DEC x 1 if borrow from bit 4 else 0 1

General purp DAA anything no change
arithmetic NEG 1 if borrow bit 4 else 0 1
 CPL 1 1
 CCF no change 0
 SCF 0 1

16 bit ADC HL xx 1 if carry from bit 11 else 0 0
arithmetic ADD HL xx " 0
 ADD IX xx " 0
 ADD IY xx " 0
 SBC HL xx 1 if borrow from bit 12 else 0 1

 RLCA 0 0
 RLA 0 0
 RRCA 0 0
 RRA 0 0
 RLC x 0 0
 RL x 0 0
 RRC x 0 0
Rotate and RR x 0 0

shift group SLA x 0 0
 SRA x 0 0
 SRL x 0 0
 RLD x 0 0
 RRD x 0 0

Bit test gp BIT n x 1 0

 / IN R (C) 0 0

Input and INI,INIR, anything 1
output IND,INDR, anything 1
group OUTI,OTIR, anything 1
 \ OUTD,OTDR anything 1

 More about the flags

 The 6 flags are sometimes grouped into the so called F
register. This register is combined with the A register to form
the AF register, which is used in such instructions as EX AF AF',
PUSH AF and POP AF. The flags are assigned as follows.

Flag S Z - H - P N C

Binary bit 7 6 5 4 3 2 1 0

**

 Appendix

 Values and conversion of bases and ASCII characters

1 = value in decimal
2 = value in hexadecimal
3 = value in binary
4 = value in two's complement
5 = ASCII charater if valid

 1 2 3 4 5

 0 00 00000000 0 CONTROL SHIFT P, NULL
 1 01 00000001 1 CONTROL A
 2 02 00000010 2 CONTROL B
 3 03 00000011 3 CONTROL C
 4 04 00000100 4 CONTROL D
 5 05 00000101 5 CONTROL E
 6 06 00000110 6 CONTROL F
 7 07 00000111 7 CONTROL G, rings bell
 8 08 00001000 8 CONTROL H
 9 09 00001001 9 CONTROL I
 10 0A 00001010 10 CONTROL J, line feed
 11 0B 00001011 11 CONTROL K
 12 0C 00001100 12 CONTROL L
 13 0D 00001101 13 CONTROL M, carriage return
 14 0E 00001110 14 CONTROL N
 15 0F 00001111 15 CONTROL O

 16 10 00010000 16 CONTROL P
 17 11 00010001 17 CONTROL Q
 18 12 00010010 18 CONTROL R
 19 13 00010011 19 CONTROL S
 20 14 00010100 20 CONTROL T
 21 15 00010101 21 CONTROL U
 22 16 00010110 22 CONTROL V
 23 17 00010111 23 CONTROL W
 24 18 00011000 24 CONTROL X
 25 19 00011001 25 CONTROL Y
 26 1A 00011010 26 CONTROL Z
 27 1B 00011011 27 CONTROL SHIFT K, ESCAPE
 28 1C 00011100 28 CONTROL SHIFT L
 29 1D 00011101 29 CONTROL SHIFT M
 30 1E 00011110 30 CONTROL SHIFT N
 31 1F 00011111 31 CONTROL SHIFT O
 32 20 00100000 32 SPACE
 33 21 00100001 33 !
 34 22 00100010 34 "
 35 23 00100011 35 #
 36 24 00100100 36 $
 37 25 00100101 37 %
 38 26 00100110 38 &
 39 27 00100111 39 '
 40 28 00101000 40 (
 41 29 00101001 41)
 42 2A 00101010 42 *
 43 2B 00101011 43 +
 44 2C 00101100 44 ,
 45 2D 00101101 45 -
 46 2E 00101110 46 .
 47 2F 00101111 47 /
 48 30 00110000 48 0
 49 31 00110001 49 1
 50 32 00110010 50 2
 51 33 00110011 51 3
 52 34 00110100 52 4
 53 35 00110101 53 5
 54 36 00110110 54 6
 55 37 00110111 55 7
 56 38 00111000 56 8
 57 39 00111001 57 9
 58 3A 00111010 58 :
 59 3B 00111011 59 ;
 60 3C 00111100 60 <
 61 3D 00111101 61 =
 62 3E 00111110 62 >
 63 3F 00111111 63 ?
 64 40 01000000 64 @
 65 41 01000001 65 A
 66 42 01000010 66 B
 67 43 01000011 67 C
 68 44 01000100 68 D
 69 45 01000101 69 E
 70 46 01000110 70 F
 71 47 01000111 71 G
 72 48 01001000 72 H

 73 49 01001001 73 I
 74 4A 01001010 74 J
 75 4B 01001011 75 K
 76 4C 01001100 76 L
 77 4D 01001101 77 M
 78 4E 01001110 78 N
 79 4F 01001111 79 O
 80 50 01010000 80 P
 81 51 01010001 81 Q
 82 52 01010010 82 R
 83 53 01010011 83 S
 84 54 01010100 84 T
 85 55 01010101 85 U
 86 56 01010110 86 V
 87 57 01010111 87 W
 88 58 01011000 88 X
 89 59 01011001 89 Y
 90 5A 01011010 90 Z
 91 5B 01011011 91 [
 92 5C 01011100 92 \
 93 5D 01011101 93]
 94 5E 01011110 94 ^
 95 5F 01011111 95 _
 96 60 01100000 96 `
 97 61 01100001 97 a
 98 62 01100010 98 b
 99 63 01100011 99 c
 100 64 01100100 100 d
 101 65 01100101 101 e
 102 66 01100110 102 f
 103 67 01100111 103 g
 104 68 01101000 104 h
 105 69 01101001 105 i
 106 6A 01101010 106 j
 107 6B 01101011 107 k
 108 6C 01101100 108 l
 109 6D 01101101 109 m
 110 6E 01101110 110 n
 111 6F 01101111 111 o
 112 70 01110000 112 p
 113 71 01110001 113 q
 114 72 01110010 114 r
 115 73 01110011 115 s
 116 74 01110100 116 t
 117 75 01110101 117 u
 118 76 01110110 118 v
 119 77 01110111 119 w
 120 78 01111000 120 x
 121 79 01111001 121 y
 122 7A 01111010 122 z
 123 7B 01111011 123 {
 124 7C 01111100 124 |
 125 7D 01111101 125 }
 126 7E 01111110 126 ~
 127 7F 01111111 127 DELETE
 128 80 10000000 -128
 129 81 10000001 -127

 130 82 10000010 -126
 131 83 10000011 -125
 132 84 10000100 -124
 133 85 10000101 -123
 134 86 10000110 -122
 135 87 10000111 -121
 136 88 10001000 -120
 137 89 10001001 -119
 138 8A 10001010 -118
 139 8B 10001011 -117
 140 8C 10001100 -116
 141 8D 10001101 -115
 142 8E 10001110 -114
 143 8F 10001111 -113
 144 90 10010000 -112
 145 91 10010001 -111
 146 92 10010010 -110
 147 93 10010011 -109
 148 94 10010100 -108
 149 95 10010101 -107
 150 96 10010110 -106
 151 97 10010111 -105
 152 98 10011000 -104
 153 99 10011001 -103
 154 9A 10011010 -102
 155 9B 10011011 -101
 156 9C 10011100 -100
 157 9D 10011101 -99
 158 9E 10011110 -98
 159 9F 10011111 -97
 160 A0 10100000 -96
 161 A1 10100001 -95
 162 A2 10100010 -94
 163 A3 10100011 -93
 164 A4 10100100 -92
 165 A5 10100101 -91
 166 A6 10100110 -90
 167 A7 10100111 -89
 168 A8 10101000 -88
 169 A9 10101001 -87
 170 AA 10101010 -86
 171 AB 10101011 -85
 172 AC 10101100 -84
 173 AD 10101101 -83
 174 AE 10101110 -82
 175 AF 10101111 -81
 176 B0 10110000 -80
 177 B1 10110001 -79
 178 B2 10110010 -78
 179 B3 10110011 -77
 180 B4 10110100 -76
 181 B5 10110101 -75
 182 B6 10110110 -74
 183 B7 10110111 -73
 184 B8 10111000 -72
 185 B9 10111001 -71
 186 BA 10111010 -70

 187 BB 10111011 -69
 188 BC 10111100 -68
 189 BD 10111101 -67
 190 BE 10111110 -66
 191 BF 10111111 -65
 192 C0 11000000 -64
 193 C1 11000001 -63
 194 C2 11000010 -62
 195 C3 11000011 -61
 196 C4 11000100 -60
 197 C5 11000101 -59
 198 C6 11000110 -58
 199 C7 11000111 -57
 200 C8 11001000 -56
 201 C9 11001001 -55
 202 CA 11001010 -54
 203 CB 11001011 -53
 204 CC 11001100 -52
 205 CD 11001101 -51
 206 CE 11001110 -50
 207 CF 11001111 -49
 208 D0 11010000 -48
 209 D1 11010001 -47
 210 D2 11010010 -46
 211 D3 11010011 -45
 212 D4 11010100 -44
 213 D5 11010101 -43
 214 D6 11010110 -42
 215 D7 11010111 -41
 216 D8 11011000 -40
 217 D9 11011001 -39
 218 DA 11011010 -38
 219 DB 11011011 -37
 220 DC 11011100 -36
 221 DD 11011101 -35
 222 DE 11011110 -34
 223 DF 11011111 -33
 224 E0 11100000 -32
 225 E1 11100001 -31
 226 E2 11100010 -30
 227 E3 11100011 -29
 228 E4 11100100 -28
 229 E5 11100101 -27
 230 E6 11100110 -26
 231 E7 11100111 -25
 232 E8 11101000 -24
 233 E9 11101001 -23
 234 EA 11101010 -22
 235 EB 11101011 -21
 236 EC 11101100 -20
 237 ED 11101101 -19
 238 EE 11101110 -18
 239 EF 11101111 -17
 240 F0 11110000 -16
 241 F1 11110001 -15
 242 F2 11110010 -14
 243 F3 11110011 -13

 244 F4 11110100 -12
 245 F5 11110101 -11
 246 F6 11110110 -10
 247 F7 11110111 -9
 248 F8 11111000 -8
 249 F9 11111001 -7
 250 FA 11111010 -6
 251 FB 11111011 -5
 252 FC 11111100 -4
 253 FD 11111101 -3
 254 FE 11111110 -2
 255 FF 11111111 -1

NN EQU 1234H ; a sixteen bit number
N EQU 56H ; an eight bit number

 NOP ; 00
 LD BC,NN ; 01 XX XX
 LD (BC),A ; 02
 INC BC ; 03
 INC B ; 04
 DEC B ; 05
 LD B,N ; 06 XX
 RLCA ; 07
 EX AF,AF' ; 08
 ADD HL,BC ; 09
 LD A,(BC) ; 0A
 DEC BC ; 0B
 INC C ; 0C
 DEC C ; 0D
 LD C,N ; 0E XX
 RRCA ; 0F
 DJNZ $+2 ; 10
 LD DE,NN ; 11 XX XX
 LD (DE),A ; 12
 INC DE ; 13
 INC D ; 14
 DEC D ; 15
 LD D,N ; 16 XX
 RLA ; 17
 JR $+2 ; 18
 ADD HL,DE ; 19
 LD A,(DE) ; 1A
 DEC DE ; 1B
 INC E ; 1C
 DEC E ; 1D
 LD E,N ; 1E XX
 RRA ; 1F
 JR NZ,$+2 ; 20
 LD HL,NN ; 21 XX XX
 LD (NN),HL ; 22 XX XX
 INC HL ; 23
 INC H ; 24
 DEC H ; 25
 LD H,N ; 26 XX
 DAA ; 27
 JR Z,$+2 ; 28

 ADD HL,HL ; 29
 LD HL,(NN) ; 2A XX XX
 DEC HL ; 2B
 INC L ; 2C
 DEC L ; 2D
 LD L,N ; 2E XX
 CPL ; 2F
 JR NC,$+2 ; 30
 LD SP,NN ; 31 XX XX
 LD (NN),A ; 32 XX XX
 INC SP ; 33
 INC (HL) ; 34
 DEC (HL) ; 35
 LD (HL),N ; 36 XX
 SCF ; 37
 JR C,$+2 ; 38
 ADD HL,SP ; 39
 LD A,(NN) ; 3A XX XX
 DEC SP ; 3B
 INC A ; 3C
 DEC A ; 3D
 LD A,N ; 3E XX
 CCF ; 3F
 LD B,B ; 40
 LD B,C ; 41
 LD B,D ; 42
 LD B,E ; 43
 LD B,H ; 44
 LD B,L ; 45
 LD B,(HL) ; 46
 LD B,A ; 47
 LD C,B ; 48
 LD C,C ; 49
 LD C,D ; 4A
 LD C,E ; 4B
 LD C,H ; 4C
 LD C,L ; 4D
 LD C,(HL) ; 4E
 LD C,A ; 4F
 LD D,B ; 50
 LD D,C ; 51
 LD D,D ; 52
 LD D,E ; 53
 LD D,H ; 54
 LD D,L ; 55
 LD D,(HL) ; 56
 LD D,A ; 57
 LD E,B ; 58
 LD E,C ; 59
 LD E,D ; 5A
 LD E,E ; 5B
 LD E,H ; 5C
 LD E,L ; 5D
 LD E,(HL) ; 5E
 LD E,A ; 5F
 LD H,B ; 60
 LD H,C ; 61

 LD H,D ; 62
 LD H,E ; 63
 LD H,H ; 64
 LD H,L ; 65
 LD H,(HL) ; 66
 LD H,A ; 67
 LD L,B ; 68
 LD L,C ; 69
 LD L,D ; 6A
 LD L,E ; 6B
 LD L,H ; 6C
 LD L,L ; 6D
 LD L,(HL) ; 6E
 LD L,A ; 6F
 LD (HL),B ; 70
 LD (HL),C ; 71
 LD (HL),D ; 72
 LD (HL),E ; 73
 LD (HL),H ; 74
 LD (HL),L ; 75
 HALT ; 76
 LD (HL),A ; 77
 LD A,B ; 78
 LD A,C ; 79
 LD A,D ; 7A
 LD A,E ; 7B
 LD A,H ; 7C
 LD A,L ; 7D
 LD A,(HL) ; 7E
 LD A,A ; 7F
 ADD A,B ; 80
 ADD A,C ; 81
 ADD A,D ; 82
 ADD A,E ; 83
 ADD A,H ; 84
 ADD A,L ; 85
 ADD A,(HL) ; 86
 ADD A,A ; 87
 ADC A,B ; 88
 ADC A,C ; 89
 ADC A,D ; 8A
 ADC A,E ; 8B
 ADC A,H ; 8C
 ADC A,L ; 8D
 ADC A,(HL) ; 8E
 ADC A,A ; 8F
 SUB B ; 90
 SUB C ; 91
 SUB D ; 92
 SUB E ; 93
 SUB H ; 94
 SUB L ; 95
 SUB (HL) ; 96
 SUB A ; 97
 SBC B ; 98
 SBC C ; 99
 SBC D ; 9A

 SBC E ; 9B
 SBC H ; 9C
 SBC L ; 9D
 SBC (HL) ; 9E
 SBC A ; 9F
 AND B ; A0
 AND C ; A1
 AND D ; A2
 AND E ; A3
 AND H ; A4
 AND L ; A5
 AND (HL) ; A6
 AND A ; A7
 XOR B ; A8
 XOR C ; A9
 XOR D ; AA
 XOR E ; AB
 XOR H ; AC
 XOR L ; AD
 XOR (HL) ; AE
 XOR A ; AF
 OR B ; B0
 OR C ; B1
 OR D ; B2
 OR E ; B3
 OR H ; B4
 OR L ; B5
 OR (HL) ; B6
 OR A ; B7
 CP B ; B8
 CP C ; B9
 CP D ; BA
 CP E ; BB
 CP H ; BC
 CP L ; BD
 CP (HL) ; BE
 CP A ; BF
 RET NZ ; C0
 POP BC ; C1
 JP NZ,$+3 ; C2
 JP $+3 ; C3
 CALL NZ,NN ; C4 XX XX
 PUSH BC ; C5
 ADD A,N ; C6 XX
 RST 0 ; C7
 RET Z ; C8
 RET ; C9
 JP Z,$+3 ; CA
 RLC B ; CB 00
 RLC C ; CB 01
 RLC D ; CB 02
 RLC E ; CB 03
 RLC H ; CB 04
 RLC L ; CB 05
 RLC (HL) ; CB 06
 RLC A ; CB 07
 RRC B ; CB 08

 RRC C ; CB 09
 RRC D ; CB 0A
 RRC E ; CB 0B
 RRC H ; CB 0C
 RRC L ; CB 0D
 RRC (HL) ; CB 0E
 RRC A ; CB 0F
 RL B ; CB 10
 RL C ; CB 11
 RL D ; CB 12
 RL E ; CB 13
 RL H ; CB 14
 RL L ; CB 15
 RL (HL) ; CB 16
 RL A ; CB 17
 RR B ; CB 18
 RR C ; CB 19
 RR D ; CB 1A
 RR E ; CB 1B
 RR H ; CB 1C
 RR L ; CB 1D
 RR (HL) ; CB 1E
 RR A ; CB 1F
 SLA B ; CB 20
 SLA C ; CB 21
 SLA D ; CB 22
 SLA E ; CB 23
 SLA H ; CB 24
 SLA L ; CB 25
 SLA (HL) ; CB 26
 SLA A ; CB 27
 SRA B ; CB 28
 SRA C ; CB 29
 SRA D ; CB 2A
 SRA E ; CB 2B
 SRA H ; CB 2C
 SRA L ; CB 2D
 SRA (HL) ; CB 2E
 SRA A ; CB 2F
 SRL B ; CB 38
 SRL C ; CB 39
 SRL D ; CB 3A
 SRL E ; CB 3B
 SRL H ; CB 3C
 SRL L ; CB 3D
 SRL (HL) ; CB 3E
 SRL A ; CB 3F
 BIT 0,B ; CB 40
 BIT 0,C ; CB 41
 BIT 0,D ; CB 42
 BIT 0,E ; CB 43
 BIT 0,H ; CB 44
 BIT 0,L ; CB 45
 BIT 0,(HL) ; CB 46
 BIT 0,A ; CB 47
 BIT 1,B ; CB 48
 BIT 1,C ; CB 49

 BIT 1,D ; CB 4A
 BIT 1,E ; CB 4B
 BIT 1,H ; CB 4C
 BIT 1,L ; CB 4D
 BIT 1,(HL) ; CB 4E
 BIT 1,A ; CB 4F
 BIT 2,B ; CB 50
 BIT 2,C ; CB 51
 BIT 2,D ; CB 52
 BIT 2,E ; CB 53
 BIT 2,H ; CB 54
 BIT 2,L ; CB 55
 BIT 2,(HL) ; CB 56
 BIT 2,A ; CB 57
 BIT 3,B ; CB 58
 BIT 3,C ; CB 59
 BIT 3,D ; CB 5A
 BIT 3,E ; CB 5B
 BIT 3,H ; CB 5C
 BIT 3,L ; CB 5D
 BIT 3,(HL) ; CB 5E
 BIT 3,A ; CB 5F
 BIT 4,B ; CB 60
 BIT 4,C ; CB 61
 BIT 4,D ; CB 62
 BIT 4,E ; CB 63
 BIT 4,H ; CB 64
 BIT 4,L ; CB 65
 BIT 4,(HL) ; CB 66
 BIT 4,A ; CB 67
 BIT 5,B ; CB 68
 BIT 5,C ; CB 69
 BIT 5,D ; CB 6A
 BIT 5,E ; CB 6B
 BIT 5,H ; CB 6C
 BIT 5,L ; CB 6D
 BIT 5,(HL) ; CB 6E
 BIT 5,A ; CB 6F
 BIT 6,B ; CB 70
 BIT 6,C ; CB 71
 BIT 6,D ; CB 72
 BIT 6,E ; CB 73
 BIT 6,H ; CB 74
 BIT 6,L ; CB 75
 BIT 6,(HL) ; CB 76
 BIT 6,A ; CB 77
 BIT 7,B ; CB 78
 BIT 7,C ; CB 79
 BIT 7,D ; CB 7A
 BIT 7,E ; CB 7B
 BIT 7,H ; CB 7C
 BIT 7,L ; CB 7D
 BIT 7,(HL) ; CB 7E
 BIT 7,A ; CB 7F
 RES 0,B ; CB 80
 RES 0,C ; CB 81
 RES 0,D ; CB 82

 RES 0,E ; CB 83
 RES 0,H ; CB 84
 RES 0,L ; CB 85
 RES 0,(HL) ; CB 86
 RES 0,A ; CB 87
 RES 1,B ; CB 88
 RES 1,C ; CB 89
 RES 1,D ; CB 8A
 RES 1,E ; CB 8B
 RES 1,H ; CB 8C
 RES 1,L ; CB 8D
 RES 1,(HL) ; CB 8E
 RES 1,A ; CB 8F
 RES 2,B ; CB 90
 RES 2,C ; CB 91
 RES 2,D ; CB 92
 RES 2,E ; CB 93
 RES 2,H ; CB 94
 RES 2,L ; CB 95
 RES 2,(HL) ; CB 96
 RES 2,A ; CB 97
 RES 3,B ; CB 98
 RES 3,C ; CB 99
 RES 3,D ; CB 9A
 RES 3,E ; CB 9B
 RES 3,H ; CB 9C
 RES 3,L ; CB 9D
 RES 3,(HL) ; CB 9E
 RES 3,A ; CB 9F
 RES 4,B ; CB A0
 RES 4,C ; CB A1
 RES 4,D ; CB A2
 RES 4,E ; CB A3
 RES 4,H ; CB A4
 RES 4,L ; CB A5
 RES 4,(HL) ; CB A6
 RES 4,A ; CB A7
 RES 5,B ; CB A8
 RES 5,C ; CB A9
 RES 5,D ; CB AA
 RES 5,E ; CB AB
 RES 5,H ; CB AC
 RES 5,L ; CB AD
 RES 5,(HL) ; CB AE
 RES 5,A ; CB AF
 RES 6,B ; CB B0
 RES 6,C ; CB B1
 RES 6,D ; CB B2
 RES 6,E ; CB B3
 RES 6,H ; CB B4
 RES 6,L ; CB B5
 RES 6,(HL) ; CB B6
 RES 6,A ; CB B7
 RES 7,B ; CB B8
 RES 7,C ; CB B9
 RES 7,D ; CB BA
 RES 7,E ; CB BB

 RES 7,H ; CB BC
 RES 7,L ; CB BD
 RES 7,(HL) ; CB BE
 RES 7,A ; CB BF
 SET 0,B ; CB C0
 SET 0,C ; CB C1
 SET 0,D ; CB C2
 SET 0,E ; CB C3
 SET 0,H ; CB C4
 SET 0,L ; CB C5
 SET 0,(HL) ; CB C6
 SET 0,A ; CB C7
 SET 1,B ; CB C8
 SET 1,C ; CB C9
 SET 1,D ; CB CA
 SET 1,E ; CB CB
 SET 1,H ; CB CC
 SET 1,L ; CB CD
 SET 1,(HL) ; CB CE
 SET 1,A ; CB CF
 SET 2,B ; CB D0
 SET 2,C ; CB D1
 SET 2,D ; CB D2
 SET 2,E ; CB D3
 SET 2,H ; CB D4
 SET 2,L ; CB D5
 SET 2,(HL) ; CB D6
 SET 2,A ; CB D7
 SET 3,B ; CB D8
 SET 3,C ; CB D9
 SET 3,D ; CB DA
 SET 3,E ; CB DB
 SET 3,H ; CB DC
 SET 3,L ; CB DD
 SET 3,(HL) ; CB DE
 SET 3,A ; CB DF
 SET 4,B ; CB E0
 SET 4,C ; CB E1
 SET 4,D ; CB E2
 SET 4,E ; CB E3
 SET 4,H ; CB E4
 SET 4,L ; CB E5
 SET 4,(HL) ; CB E6
 SET 4,A ; CB E7
 SET 5,B ; CB E8
 SET 5,C ; CB E9
 SET 5,D ; CB EA
 SET 5,E ; CB EB
 SET 5,H ; CB EC
 SET 5,L ; CB ED
 SET 5,(HL) ; CB EE
 SET 5,A ; CB EF
 SET 6,B ; CB F0
 SET 6,C ; CB F1
 SET 6,D ; CB F2
 SET 6,E ; CB F3
 SET 6,H ; CB F4

 SET 6,L ; CB F5
 SET 6,(HL) ; CB F6
 SET 6,A ; CB F7
 SET 7,B ; CB F8
 SET 7,C ; CB F9
 SET 7,D ; CB FA
 SET 7,E ; CB FB
 SET 7,H ; CB FC
 SET 7,L ; CB FD
 SET 7,(HL) ; CB FE
 SET 7,A ; CB FF
 CALL Z,NN ; CC XX XX
 CALL NN ; CD XX XX
 ADC A,N ; CE XX
 RST 8H ; CF
 RET NC ; D0
 POP DE ; D1
 JP NC,$+3 ; D2
 OUT (N),A ; D3 XX
 CALL NC,NN ; D4 XX XX
 CALL NC,NN ; D4 XX XX
 PUSH DE ; D5
 SUB N ; D6 XX
 RST 10H ; D7
 RET C ; D8
 EXX ; D9
 JP C,$+3 ; DA
 IN A,(N) ; DB XX
 CALL C,NN ; DC XX XX
 ADD IX,BC ; DD 09
 ADD IX,DE ; DD 19
 LD IX,NN ; DD 21 XX XX
 LD (NN),IX ; DD 22 XX XX
 INC IX ; DD 23
 ADD IX,IX ; DD 29
 LD IX,(NN) ; DD 2A XX XX
 DEC IX ; DD 2B
 INC (IX+N) ; DD 34 XX
 DEC (IX+N) ; DD 35 XX
 LD (IX+N),N ; DD 36 XX XX
 ADD IX,SP ; DD 39
 LD B,(IX+N) ; DD 46 XX
 LD C,(IX+N) ; DD 4E XX
 LD D,(IX+N) ; DD 56 XX
 LD E,(IX+N) ; DD 5E XX
 LD H,(IX+N) ; DD 66 XX
 LD L,(IX+N) ; DD 6E XX
 LD (IX+N),B ; DD 70 XX
 LD (IX+N),C ; DD 71 XX
 LD (IX+N),D ; DD 72 XX
 LD (IX+N),E ; DD 73 XX
 LD (IX+N),H ; DD 74 XX
 LD (IX+N),L ; DD 75 XX
 LD (IX+N),A ; DD 77 XX
 LD A,(IX+N) ; DD 7E XX
 ADD A,(IX+N) ; DD 86 XX
 ADC A,(IX+N) ; DD 8E XX

 SUB (IX+N) ; DD 96 XX
 SBC A,(IX+N) ; DD 9E XX
 AND (IX+N) ; DD A6 XX
 XOR (IX+N) ; DD AE XX
 OR (IX+N) ; DD B6 XX
 CP (IX+N) ; DD BE XX
 RLC (IX+N) ; DD CB XX 06
 RRC (IX+N) ; DD CB XX 0E
 RL (IX+N) ; DD CB XX 16
 RR (IX+N) ; DD CB XX 1E
 SLA (IX+N) ; DD CB XX 26
 SRA (IX+N) ; DD CB XX 2E
 BIT 0,(IX+N) ; DD CB XX 46
 BIT 1,(IX+N) ; DD CB XX 4E
 BIT 2,(IX+N) ; DD CB XX 56
 BIT 3,(IX+N) ; DD CB XX 5E
 BIT 4,(IX+N) ; DD CB XX 66
 BIT 5,(IX+N) ; DD CB XX 6E
 BIT 6,(IX+N) ; DD CB XX 76
 BIT 7,(IX+N) ; DD CB XX 7E
 RES 0,(IX+N) ; DD CB XX 86
 RES 1,(IX+N) ; DD CB XX 8E
 RES 2,(IX+N) ; DD CB XX 96
 RES 3,(IX+N) ; DD CB XX 9E
 RES 4,(IX+N) ; DD CB XX A6
 RES 5,(IX+N) ; DD CB XX AE
 RES 6,(IX+N) ; DD CB XX B6
 RES 7,(IX+N) ; DD CB XX BE
 SET 0,(IX+N) ; DD CB XX C6
 SET 1,(IX+N) ; DD CB XX CE
 SET 2,(IX+N) ; DD CB XX D6
 SET 3,(IX+N) ; DD CB XX DE
 SET 4,(IX+N) ; DD CB XX E6
 SET 5,(IX+N) ; DD CB XX EE
 SET 6,(IX+N) ; DD CB XX F6
 SET 7,(IX+N) ; DD CB XX FE
 POP IX ; DD E1
 EX (SP),IX ; DD E3
 PUSH IX ; DD E5
 JP (IX) ; DD E9
 LD SP,IX ; DD F9
 SBC A,N ; DE XX
 RST 18H ; DF
 RET PO ; E0
 POP HL ; E1
 JP PO,$+3 ; E2
 EX (SP),HL ; E3
 CALL PO,NN ; E4 XX XX
 PUSH HL ; E5
 AND N ; E6 XX
 RST 20H ; E7
 RET PE ; E8
 JP (HL) ; E9
 JP PE,$+3 ; EA
 EX DE,HL ; EB
 CALL PE,NN ; EC XX XX
 IN B,(C) ; ED 40

 OUT (C),B ; ED 41
 SBC HL,BC ; ED 42
 LD (NN),BC ; ED 43 XX XX
 NEG ; ED 44
 RETN ; ED 45
 IM 0 ; ED 46
 LD I,A ; ED 47
 IN C,(C) ; ED 48
 OUT (C),C ; ED 49
 ADC HL,BC ; ED 4A
 LD BC,(NN) ; ED 4B XX XX
 RETI ; ED 4D
 IN D,(C) ; ED 50
 OUT (C),D ; ED 51
 SBC HL,DE ; ED 52
 LD (NN),DE ; ED 53 XX XX
 IM 1 ; ED 56
 LD A,I ; ED 57
 IN E,(C) ; ED 58
 OUT (C),E ; ED 59
 ADC HL,DE ; ED 5A
 LD DE,(NN) ; ED 5B XX XX
 IM 2 ; ED 5E
 IN H,(C) ; ED 60
 OUT (C),H ; ED 61
 SBC HL,HL ; ED 62
 RRD ; ED 67
 IN L,(C) ; ED 68
 OUT (C),L ; ED 69
 ADC HL,HL ; ED 6A
 RLD ; ED 6F
 SBC HL,SP ; ED 72
 LD (NN),SP ; ED 73 XX XX
 IN A,(C) ; ED 78
 OUT (C),A ; ED 79
 ADC HL,SP ; ED 7A
 LD SP,(NN) ; ED 7B XX XX
 LDI ; ED A0
 CPI ; ED A1
 INI ; ED A2
 OUTI ; ED A3
 LDD ; ED A8
 CPD ; ED A9
 IND ; ED AA
 OUTD ; ED AB
 LDIR ; ED B0
 CPIR ; ED B1
 INIR ; ED B2
 OTIR ; ED B3
 LDDR ; ED B8
 CPDR ; ED B9
 INDR ; ED BA
 OTDR ; ED BB
 XOR N ; EE XX
 RST 28H ; EF
 RET P ; F0
 POP AF ; F1

 JP P,$+3 ; F2
 DI ; F3
 CALL P,NN ; F4 XX XX
 PUSH AF ; F5
 OR N ; F6 XX
 RST 30H ; F7
 RET M ; F8
 LD SP,HL ; F9
 JP M,$+3 ; FA
 EI ; FB
 CALL M,NN ; FC XX XX
 ADD IY,BC ; FD 09
 ADD IY,DE ; FD 19
 LD IY,NN ; FD 21 XX XX
 LD (NN),IY ; FD 22 XX XX
 INC IY ; FD 23
 ADD IY,IY ; FD 29
 LD IY,(NN) ; FD 2A XX XX
 DEC IY ; FD 2B
 INC (IY+N) ; FD 34 XX
 DEC (IY+N) ; FD 35 XX
 LD (IY+N),N ; FD 36 XX XX
 ADD IY,SP ; FD 39
 LD B,(IY+N) ; FD 46 XX
 LD C,(IY+N) ; FD 4E XX
 LD D,(IY+N) ; FD 56 XX
 LD E,(IY+N) ; FD 5E XX
 LD H,(IY+N) ; FD 66 XX
 LD L,(IY+N) ; FD 6E XX
 LD (IY+N),B ; FD 70 XX
 LD (IY+N),C ; FD 71 XX
 LD (IY+N),D ; FD 72 XX
 LD (IY+N),E ; FD 73 XX
 LD (IY+N),H ; FD 74 XX
 LD (IY+N),L ; FD 75 XX
 LD (IY+N),A ; FD 77 XX
 LD A,(IY+N) ; FD 7E XX
 ADD A,(IY+N) ; FD 86 XX
 ADC A,(IY+N) ; FD 8E XX
 SUB (IY+N) ; FD 96 XX
 SBC A,(IY+N) ; FD 9E XX
 AND (IY+N) ; FD A6 XX
 XOR (IY+N) ; FD AE XX
 OR (IY+N) ; FD B6 XX
 CP (IY+N) ; FD BE XX
 RLC (IY+N) ; FD CB XX 06
 RRC (IY+N) ; FD CB XX 0E
 RL (IY+N) ; FD CB XX 16
 RR (IY+N) ; FD CB XX 1E
 SLA (IY+N) ; FD CB XX 26
 SRA (IY+N) ; FD CB XX 2E
 BIT 0,(IY+N) ; FD CB XX 46
 BIT 1,(IY+N) ; FD CB XX 4E
 BIT 2,(IY+N) ; FD CB XX 56
 BIT 3,(IY+N) ; FD CB XX 5E
 BIT 4,(IY+N) ; FD CB XX 66
 BIT 5,(IY+N) ; FD CB XX 6E

 BIT 6,(IY+N) ; FD CB XX 76
 BIT 7,(IY+N) ; FD CB XX 7E
 RES 0,(IY+N) ; FD CB XX 86
 RES 1,(IY+N) ; FD CB XX 8E
 RES 2,(IY+N) ; FD CB XX 96
 RES 3,(IY+N) ; FD CB XX 9E
 RES 4,(IY+N) ; FD CB XX A6
 RES 5,(IY+N) ; FD CB XX AE
 RES 6,(IY+N) ; FD CB XX B6
 RES 7,(IY+N) ; FD CB XX BE
 SET 0,(IY+N) ; FD CB XX C6
 SET 1,(IY+N) ; FD CB XX CE
 SET 2,(IY+N) ; FD CB XX D6
 SET 3,(IY+N) ; FD CB XX DE
 SET 4,(IY+N) ; FD CB XX E6
 SET 5,(IY+N) ; FD CB XX EE
 SET 6,(IY+N) ; FD CB XX F6
 SET 7,(IY+N) ; FD CB XX FE
 POP IY ; FD E1
 EX (SP),IY ; FD E3
 PUSH IY ; FD E5
 JP (IY) ; FD E9
 LD SP,IY ; FD F9
 CP N ; FE XX
 RST 38H ; FF

